Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Buffer capacity of granular materials and its influencing factors based on discrete element method

Ji Shun-Ying Fan Li-Fang Liang Shao-Min

Citation:

Buffer capacity of granular materials and its influencing factors based on discrete element method

Ji Shun-Ying, Fan Li-Fang, Liang Shao-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As a typical energy dissipation system, granular material acts as a buffer under the action of impact load, with absorbing and dissipating energy effectively through the sliding friction and viscous contacts between particles. In this paper we study the buffer capacity of granular material under impact load, by the discrete element method (DEM). The spherical elements are filled randomly into a rigid cylinder under the action of gravity. A spherical projectile with a certain initial velocity drops into the granular bed from a given height. The impact loads on the projectile and the rigid bottom plate of cylinder are both obtained with DEM simulations. The simulated impact loads on the bottom plate are compared well with the physical experiment data. The influences of granular thickness, sliding friction and initial concentration on buffer capacity are investigated under the impact of spherical projectile. The DEM results show that granular thickness H is a key factor for buffer capacity. In the DEM simulations, the impact load on bottom plate presents unique characteristics under various granular thickness values. With granular thickness increasing from zero, a transition from one peak to two peaks takes place, then the two peaks return to one peak in the time curve of impact load. The evolution of impact load peak with its temporal interval is discussed. A critical thickness Hc is obtained. The impact force decreases with the increase of granular thickness when H Hc, but is independent of the granular thickness when H Hc. Moreover, the impact forces are simulated under various sliding friction coefficients and initial concentrations. It is found that the smooth and loose granular material has more effective buffer capacity. Finally, the spatial structures of force chains and the distribution of impact forces on bottom plate are discussed to reveal the mechanism of buffer properties of granular material on a micro scale.
      Corresponding author: Ji Shun-Ying, jisy@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572067, U1234209) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT15ZD105).
    [1]

    Stone M B, Bernstein D P, Barry R, Pelc M D, Tsui Y K, Schiffer P 2004 Nature 427 503

    [2]

    Geng J, Howell D, Longhi E, Behringer R P, Reydellet G, Vanel L, Clment E, Luding S 2001 Phys. Rev. Lett. 87 035506

    [3]

    Yu T, Zhang G H, Sun Q C, Zhao X D, Ma W B 2015 Acta Phys. Sin. 64 044501 (in Chinese) [余田, 张国华, 孙其诚, 赵雪丹, 马文波 2015 64 044501]

    [4]

    Du Y C, Wang S L, Zhang J L 2010 Int. J. Impact. Eng. 7 309

    [5]

    Toiya M, Hettinga J, Losert W 2007 Granular Matter 9 323

    [6]

    Zhao Z, Liu C S, Brogliato B 2008 Phys. Rev. E 78 031307

    [7]

    Ji S Y, Li P F, Chen X D 2012 Acta Phys. Sin. 61 301 (in Chinese) [季顺迎, 李鹏飞, 陈晓东 2012 61 301]

    [8]

    Ruiz-Suarez J C 2013 Rep. Prog. Phys. 76 066601

    [9]

    Clark A H, Petersen A J, Kondic L, Behringe R P 2015 Phys. Rev. Lett. 114 144502

    [10]

    Uehara J S, Ambroso M A, Ojha R P, Durian D J 2003 Phys. Rev. Lett. 90 194301

    [11]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Modern Phys. 68 1259

    [12]

    Kondic L, Fang X, Losert W, OHern C S, Behringer R P 2012 Phys. Rev. E 85 011305.

    [13]

    Nordstrom K N, Lim E, Harrington M, Losert W 2014 Phys. Rew. Lett. 112 228002

    [14]

    Pacheco-Vazquez F, Ruiz-Suarez J C 2011 Phys. Rev. Lett. 107 218001

    [15]

    Omidvar M, Iskander M, Bless S 2014 Int. J. Impact Eng. 66 60

    [16]

    Ambroso M A, Santore C R, Abate A R, Durian D J 2005 Phys. Rev. E 71 051305

    [17]

    Walsh A M, Holloway K E, Habdas P, de Bruyn J R 2003 Phys. Rev. Lett. 91 104301

    [18]

    Wang D, Ye X, and Zheng X 2012 Euro. Phys. J. E 35 7

    [19]

    Pacheco-Vazquez F, Caballero-Robledo G A, Solano-Altamirano J M, Altshuler E, Batista-Leyva A J, Ruiz-Sua rez J C 2011 Phys. Rev. Lett. 106 218001

    [20]

    Goldman D I. Umbanhowar P 2008 Phys. Rev. E 77 021308

    [21]

    Ciamarra M P, Lara A H, Lee A T, Golman D I, Vishik I, Swinney L 2004 Phys. Rev. Lett. 92 194301

    [22]

    Katsuragi H, Durian D J. 2007 Nature Phys. 3 420

    [23]

    Ye X Y, Wang D M, Zheng Z J 2012 Phys. Rev. E 86 061304

    [24]

    Peng Z, Xu X, Lu K and Hou M 2009 Phys. Rev. E 80 021301

    [25]

    Albert I, Sample J G, Morss A J, Rajagopalan S, Barabasi A-L, Schiffer P 2001 Phys. Rev. E 64 061303

    [26]

    Hou M, Peng Z, Liu R, Lu K, Chan C K 2005 Phys. Rev. E 72 062301

    [27]

    Takehara Y, Fujimoto S, Okumura K 2010 Epl-Europhys. Lett. 92 44003

    [28]

    Nishida M, Tanaka Y 2010 Granular Matter 12 357

    [29]

    Tanaka K, Nishida M, Kunimochi T, Takagi T 2002 Powder Technol. 124 160

    [30]

    Birch S P D, Manga M, Delbridge B, Chamberlain M 2014 Phys. Rev. E 90 032208

    [31]

    Brzinski III T A, Schug J, Mao K, Durian D J 2015 Phys. Rev. E 91 022202

    [32]

    Awasthi A, Wang Z Y, Broadhurst N, Geubelle P 2015 Granular Matter 17 21

    [33]

    Sakamura Y, Komaki H 2012 Shock Waves 22 57

    [34]

    Stone M B, Barry R, Bernstein D P, Pelc M D, Tsui Y K, Schiffer P 2004 Phys. Rev. E 70 041301

    [35]

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502 (in Chinese) [彭政, 蒋亦民, 刘锐, 厚美瑛. 2013 62 024502]

    [36]

    Xue K, Bai C 2011 Phys. Rev. E 83 021305

    [37]

    Bourrier F, Nicot F, Darve F 2008 Granular Matter 10 415

    [38]

    Chen Q, Hou M Y 2014 Chin. Phys. B 23 074501

    [39]

    Jiang Y J, Zhao Y, Towhata I, Liu D X 2015 Powder Technol. 270 53

    [40]

    Muller P, Poschel T 2011 Phys. Rev. E 84 021302

    [41]

    Chung Y C, Ooi J Y 2011 Granular Matter 13 643

    [42]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

    [43]

    Oger L, Ammi M, Valance A, Beladjine D 2005 Eur. Phys. J. E 17 467

    [44]

    Crassous J, Beladjine D, Valance A 2007 Phys. Rev. Lett. 99 248001

    [45]

    Abd-Elhady M S, Abd-Elhady S, Rindt C C M, van Steenhoven A A 2010 Adv. Powder Technol. 21 150

    [46]

    Tiwari M, Mohan T R K, Sen S 2014 Phys. Rev. E 90 062202

    [47]

    Loranca-Ramos F E, Carrillo-Estrada J L, Pacheco-Vazquez F 2015 Phys. Rev. Lett. 115 028001

    [48]

    Wada K, Senshu H, Matsui T 2006 Icarus 180 528

    [49]

    Ciamarra M P, Lara A H, Lee A T, Goldman D I, Vishik I, Swinney H L 2004 Phys. Rev. Lett. 92 194301

    [50]

    Nelson E L, Katsuragi H, Mayor P, Durian D J 2008 Phys. Rev. Lett. 101 068001

    [51]

    Li Y, Dove A, Curtis J S, Colwell J E 2016 Powder Technol. 288 303

    [52]

    Ramirez R, Poschel T, Brilliantov N V, Schwager T 1999 Phys. Rev. E 60 4465

    [53]

    Park J, Song J J 2009 Int. J. Rock Mech. Min. 46 1315

    [54]

    Maio F P D, Renzo A D 2005 Chem. Eng. Sci. 60 1303

    [55]

    Kremmer M, Favier J F 2001 Int. J. Numer. Meth. Eng. 51 1407

    [56]

    Yan Y, Ji S Y 2009 Int. J. Numer. Anal. Met. 34 978

    [57]

    Nishida M, Okumura M., Tanaka K 2010 Granular Matter 12 337

    [58]

    Tapia F, Espindola D, Hamm E, Melo F 2013 Phys. Rev. E 87 014201

    [59]

    Midi G D R 2004 Eur. Phys. J. E 14 341

    [60]

    Umbanhowar P, Goldman D I 2010 Phys. Rev. E 82 010301

    [61]

    Bi Z W, Sun Q C, Liu J G, Jin F 2011 Mech. Eng. 33 10 (in Chinese) [毕忠伟, 孙其诚, 刘建国, 金峰 2011 力学与实践 33 10]

  • [1]

    Stone M B, Bernstein D P, Barry R, Pelc M D, Tsui Y K, Schiffer P 2004 Nature 427 503

    [2]

    Geng J, Howell D, Longhi E, Behringer R P, Reydellet G, Vanel L, Clment E, Luding S 2001 Phys. Rev. Lett. 87 035506

    [3]

    Yu T, Zhang G H, Sun Q C, Zhao X D, Ma W B 2015 Acta Phys. Sin. 64 044501 (in Chinese) [余田, 张国华, 孙其诚, 赵雪丹, 马文波 2015 64 044501]

    [4]

    Du Y C, Wang S L, Zhang J L 2010 Int. J. Impact. Eng. 7 309

    [5]

    Toiya M, Hettinga J, Losert W 2007 Granular Matter 9 323

    [6]

    Zhao Z, Liu C S, Brogliato B 2008 Phys. Rev. E 78 031307

    [7]

    Ji S Y, Li P F, Chen X D 2012 Acta Phys. Sin. 61 301 (in Chinese) [季顺迎, 李鹏飞, 陈晓东 2012 61 301]

    [8]

    Ruiz-Suarez J C 2013 Rep. Prog. Phys. 76 066601

    [9]

    Clark A H, Petersen A J, Kondic L, Behringe R P 2015 Phys. Rev. Lett. 114 144502

    [10]

    Uehara J S, Ambroso M A, Ojha R P, Durian D J 2003 Phys. Rev. Lett. 90 194301

    [11]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Modern Phys. 68 1259

    [12]

    Kondic L, Fang X, Losert W, OHern C S, Behringer R P 2012 Phys. Rev. E 85 011305.

    [13]

    Nordstrom K N, Lim E, Harrington M, Losert W 2014 Phys. Rew. Lett. 112 228002

    [14]

    Pacheco-Vazquez F, Ruiz-Suarez J C 2011 Phys. Rev. Lett. 107 218001

    [15]

    Omidvar M, Iskander M, Bless S 2014 Int. J. Impact Eng. 66 60

    [16]

    Ambroso M A, Santore C R, Abate A R, Durian D J 2005 Phys. Rev. E 71 051305

    [17]

    Walsh A M, Holloway K E, Habdas P, de Bruyn J R 2003 Phys. Rev. Lett. 91 104301

    [18]

    Wang D, Ye X, and Zheng X 2012 Euro. Phys. J. E 35 7

    [19]

    Pacheco-Vazquez F, Caballero-Robledo G A, Solano-Altamirano J M, Altshuler E, Batista-Leyva A J, Ruiz-Sua rez J C 2011 Phys. Rev. Lett. 106 218001

    [20]

    Goldman D I. Umbanhowar P 2008 Phys. Rev. E 77 021308

    [21]

    Ciamarra M P, Lara A H, Lee A T, Golman D I, Vishik I, Swinney L 2004 Phys. Rev. Lett. 92 194301

    [22]

    Katsuragi H, Durian D J. 2007 Nature Phys. 3 420

    [23]

    Ye X Y, Wang D M, Zheng Z J 2012 Phys. Rev. E 86 061304

    [24]

    Peng Z, Xu X, Lu K and Hou M 2009 Phys. Rev. E 80 021301

    [25]

    Albert I, Sample J G, Morss A J, Rajagopalan S, Barabasi A-L, Schiffer P 2001 Phys. Rev. E 64 061303

    [26]

    Hou M, Peng Z, Liu R, Lu K, Chan C K 2005 Phys. Rev. E 72 062301

    [27]

    Takehara Y, Fujimoto S, Okumura K 2010 Epl-Europhys. Lett. 92 44003

    [28]

    Nishida M, Tanaka Y 2010 Granular Matter 12 357

    [29]

    Tanaka K, Nishida M, Kunimochi T, Takagi T 2002 Powder Technol. 124 160

    [30]

    Birch S P D, Manga M, Delbridge B, Chamberlain M 2014 Phys. Rev. E 90 032208

    [31]

    Brzinski III T A, Schug J, Mao K, Durian D J 2015 Phys. Rev. E 91 022202

    [32]

    Awasthi A, Wang Z Y, Broadhurst N, Geubelle P 2015 Granular Matter 17 21

    [33]

    Sakamura Y, Komaki H 2012 Shock Waves 22 57

    [34]

    Stone M B, Barry R, Bernstein D P, Pelc M D, Tsui Y K, Schiffer P 2004 Phys. Rev. E 70 041301

    [35]

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502 (in Chinese) [彭政, 蒋亦民, 刘锐, 厚美瑛. 2013 62 024502]

    [36]

    Xue K, Bai C 2011 Phys. Rev. E 83 021305

    [37]

    Bourrier F, Nicot F, Darve F 2008 Granular Matter 10 415

    [38]

    Chen Q, Hou M Y 2014 Chin. Phys. B 23 074501

    [39]

    Jiang Y J, Zhao Y, Towhata I, Liu D X 2015 Powder Technol. 270 53

    [40]

    Muller P, Poschel T 2011 Phys. Rev. E 84 021302

    [41]

    Chung Y C, Ooi J Y 2011 Granular Matter 13 643

    [42]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

    [43]

    Oger L, Ammi M, Valance A, Beladjine D 2005 Eur. Phys. J. E 17 467

    [44]

    Crassous J, Beladjine D, Valance A 2007 Phys. Rev. Lett. 99 248001

    [45]

    Abd-Elhady M S, Abd-Elhady S, Rindt C C M, van Steenhoven A A 2010 Adv. Powder Technol. 21 150

    [46]

    Tiwari M, Mohan T R K, Sen S 2014 Phys. Rev. E 90 062202

    [47]

    Loranca-Ramos F E, Carrillo-Estrada J L, Pacheco-Vazquez F 2015 Phys. Rev. Lett. 115 028001

    [48]

    Wada K, Senshu H, Matsui T 2006 Icarus 180 528

    [49]

    Ciamarra M P, Lara A H, Lee A T, Goldman D I, Vishik I, Swinney H L 2004 Phys. Rev. Lett. 92 194301

    [50]

    Nelson E L, Katsuragi H, Mayor P, Durian D J 2008 Phys. Rev. Lett. 101 068001

    [51]

    Li Y, Dove A, Curtis J S, Colwell J E 2016 Powder Technol. 288 303

    [52]

    Ramirez R, Poschel T, Brilliantov N V, Schwager T 1999 Phys. Rev. E 60 4465

    [53]

    Park J, Song J J 2009 Int. J. Rock Mech. Min. 46 1315

    [54]

    Maio F P D, Renzo A D 2005 Chem. Eng. Sci. 60 1303

    [55]

    Kremmer M, Favier J F 2001 Int. J. Numer. Meth. Eng. 51 1407

    [56]

    Yan Y, Ji S Y 2009 Int. J. Numer. Anal. Met. 34 978

    [57]

    Nishida M, Okumura M., Tanaka K 2010 Granular Matter 12 337

    [58]

    Tapia F, Espindola D, Hamm E, Melo F 2013 Phys. Rev. E 87 014201

    [59]

    Midi G D R 2004 Eur. Phys. J. E 14 341

    [60]

    Umbanhowar P, Goldman D I 2010 Phys. Rev. E 82 010301

    [61]

    Bi Z W, Sun Q C, Liu J G, Jin F 2011 Mech. Eng. 33 10 (in Chinese) [毕忠伟, 孙其诚, 刘建国, 金峰 2011 力学与实践 33 10]

  • [1] Zhou Mao-Ji, Li Ya-Ju, Qian Dong-Bin, Ye Xiao-Yan, Lin Ping, Ma Xin-Wen. Influence of grain size on dynamic characterizations of laser-driven grain ejection. Acta Physica Sinica, 2022, 71(14): 145203. doi: 10.7498/aps.71.20220243
    [2] Yu Tian-Lin, Fan Feng-Xian. Investigation of granular capillary rising under vertical vibration. Acta Physica Sinica, 2022, 71(10): 104501. doi: 10.7498/aps.71.20212333
    [3] Wang Si-Qiang, Ji Shun-Ying. Mixing characteristics of ellipsoidal granular materials in horizontal rotating drum based on analysis by discrete element method. Acta Physica Sinica, 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [4] Jiang Cheng-Lu, Wang Ang, Zhao Feng, Shang Hai-Lin, Zhang Ming-Jian, Liu Fu-Sheng, Liu Qi-Jun. Three-dimensional discrete element technology investigated ignition mechanism of octahydro-1, 3, 5, 7-tetranitro -1, 3, 5, 7-tetrazocine particles under drop hammer impact. Acta Physica Sinica, 2019, 68(22): 228301. doi: 10.7498/aps.68.20190993
    [5] Wang Si-Qiang, Ji Shun-Ying. Discrete element analysis of buffering capacity of non-spherical granular materials based on super-quadric method. Acta Physica Sinica, 2018, 67(9): 094501. doi: 10.7498/aps.67.20172549
    [6] Xin Cheng-Zhou, Ma Jian-Nan, Ma Jing, Nan Ce-Wen. Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite. Acta Physica Sinica, 2017, 66(6): 067502. doi: 10.7498/aps.66.067502
    [7] Xu Wen-Xiang, Sun Hong-Guang, Chen Wen, Chen Hui-Su. A review of correlative modeling for transport properties, microstructures, and compositions of granular materials in soft matter. Acta Physica Sinica, 2016, 65(17): 178101. doi: 10.7498/aps.65.178101
    [8] Yu Tian, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Ma Wen-Bo. Dynamic effective mass and power dissipation of the granular material under vertical vibration. Acta Physica Sinica, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [9] Li Shu-Chen, Ping Yang, Li Shu-Cai, Kou Qiang, Ma Teng-Fei, Feng Bing-Yang. Particles discrete element method based on manifold cover for macro-mesoscopic fracture of rock mass. Acta Physica Sinica, 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [10] Zhao La-La, Zhao Yue-Min, Liu Chu-Sheng, Li Jun. Discrete element simulation of mechanical properties of wet granular pile. Acta Physica Sinica, 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [11] Tong Jian-Bo, Huang Qian, Zhang Xiao-Dan, Zhang Cun-Shan, Zhao Ying. Effect of surface plasmon polariton of Ag nanoparticles on the photoluminescence property of up-conversion materials. Acta Physica Sinica, 2012, 61(4): 047801. doi: 10.7498/aps.61.047801
    [12] Ji Shun-Ying, Li Peng-Fei, Chen Xiao-Dong. Experiments on shock-absorbing capacity of granular matter under impact load. Acta Physica Sinica, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [13] Gao Hong-Li, Chen You-Chuan, Zhao Yong-Zhi, Zheng Jin-Yang. Simulation of mixing process for size-type binary wet particulate systems in a rotating horizontal drum by discrete element method. Acta Physica Sinica, 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [14] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Xu Zhi-Peng. Numerical simulation on segregation process of particles using 3D discrete element method. Acta Physica Sinica, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [15] Yi Chen-Hong, Mu Qing-Song, Miao Tian-De. Discrete element method simulation on the force chains in the two-dimensional granular system under gravity. Acta Physica Sinica, 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [16] Zhong Wen-Zhen, He Ke-Jing, Zhou Zhao-Yao, Xia Wei, Li Yuan-Yuan. Calibration of damping coefficient in discrete element method simulation. Acta Physica Sinica, 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [17] Zhao Yong-Zhi, Jiang Mao-Qiang, Xu Ping, Zheng Jin-Yang. Discrete element simulation of the microscopic mechanical structure in sandpile. Acta Physica Sinica, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [18] Yi Chen-Hong, Mu Qing-Sun, Miao Tian-De. The DEM simulation for two-dimension granular system with point defects. Acta Physica Sinica, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [19] Wang Qing-Xue, Yang Jian-Rong, Wei Yan-Feng. Theoretical research on critical thickness of HgCdTe epitaxial layers. Acta Physica Sinica, 2005, 54(12): 5814-5819. doi: 10.7498/aps.54.5814
    [20] JIA YUN-FA, WU HANG-SHENG. THE CRITICAL THICKNESS d0 AND THE CURVES OF THE LONGITUDINAL CRITICAL CURRENT. Acta Physica Sinica, 1984, 33(5): 684-688. doi: 10.7498/aps.33.684
Metrics
  • Abstract views:  7302
  • PDF Downloads:  383
  • Cited By: 0
Publishing process
  • Received Date:  30 November 2015
  • Accepted Date:  03 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map