-
Water vapor in a sealed glass container processed by lyophilization is a main factor for drug metamorphism. The key to knowing whether there is a leakage occurring in the container is how to detect water concentration and pressure in the sealed container quickly and accurately. In the present paper, a strong absorption line of H2O near 1.39 m is carefully selected to avoid the interference of neighboring transitions. A distributed feedback laser semiconductor laser near 1.396 m is employed as the light source with a power of 10 mW and typical linewidth of 2 MHz by combining with tunable diode laser absorption spectroscopy technique, the concentrations and pressures of water vapor in the sealed container are successfully detected under static condition and dynamic condition. In order to isolate the interference absorption from the ambient water vapor in the air, a differential absorption technique is employed in our experiment, which makes our system simpler than routine nitrogen purging based system. During the measurement, the second harmonic signal is utilized for measuring the concentration and pressure, the concentration is retrieved by the peak value while the pressure is calculated by the full width at half maximum. For the measurement of concentration ranging from 0.2% to 12%, the linear correlation coefficient between the real values and the inversed values and the standard deviation ratio are 0.9978 and 4.81%, respectively. For the measurement of pressure, the correlation coefficient and standard deviation ratio are 0.982 and 5.6%, respectively. The minimum detection limits of the concentration and pressure are 400 ppm and 2.5 Torr, respectively. Moreover, in order to test the system for on-line applications in the pharmaceutical industry, measurements are performed in vials which are placed on a rotary stage to simulate the process of the assemble line. In particular, the amplitude of sinuous signal without absorption is used as the reference signal to validate whether the vial is in the optical path. Besides, this amplitude is also utilized to normalize the laser power. The results show that our system can handle about 300 bottles in one minute, which can meet well the requirements for rapid and real-time detections. This system can be applied directly to the medicine bottle on-line detection, and multicomponent detection can also be realized by employing two or more lasers (e.g. H2O, oxygen, etc.). In the future, we plan to build a system for detecting water vapor and oxygen simultaneously, as oxygen is another import indicator for drug metamorphism.
-
Keywords:
- tunable diode laser absorption spectroscopy /
- sterile glass container /
- concentration /
- pressure
[1] Gun J, Zhao L C 2011 Gansu Med. J. 30 50 (in Chinese) [郭军, 赵良存 2011 甘肃医药 30 50]
[2] Pikal M J, Shah S 1997 PDA J. Pharm. Sci. Tech. 51 17
[3] Schneid S C, Gieseler H, Kessler W J, Luthra S A, Pika M J 2011 AAPS Pharm. Sci. Tech. 12 379
[4] Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 53301 (in Chinese) [张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 64 53301]
[5] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 54 1927]
[6] Geng H, Liu J G, Zhang Y J, Kan R F, Xu Z Y, Yao L, Ruan J 2014 Acta Phys. Sin. 63 043301 (in Chinese) [耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊 2014 63 043301]
[7] Wang H, Cao Z S, Wang Z Q, Wang L S, Gao W, Zhang W J, Gao X M 2010 Spectrosc. Spect. Anal. 30 1161 (in Chinese) [王欢, 曹振松, 王竹青, 汪六三, 高伟, 张为俊, 高晓明 2010 光谱学与光谱分析 30 1161]
[8] Cai T D, Wang G S, Chen W D, Zhang W J, Gao X M 2009 Spectro sc. Spect. Anal. 29 1463 (in Chinese) [蔡廷栋, 王贵师, 陈卫东, 张为俊, 高晓明 2009 光谱学与光谱分析 29 1463]
[9] Gieseler H, Kessler W J, Finson M, Davis S J, Mulhall P A, Bons V, Debo D J, Pikal M J 2007 Pharm. Technol. 96 1776
[10] Cai T D, Gao G Z, Liu Y 2013 Appl. Opt. 52 7682
[11] Kuu W Y, Nail S L, Sacha G 2009 J. Pharm. Sci. 98 1136
[12] Cai T D, Wang G S, Cao Z S, Zhang W J, Gao X M 2014 Opt. Laser. Eng. 58 48
[13] Cassidy D T, Reid J 1982 Appl. Opt. 21 1185
[14] Mount G H, Rumburg B, Havig J, Lamb B, Westberg H, Yonge D, Johnson K Kincaid R 2002 Atmos. Enviro. 36 1799
[15] Sun X Q, Ewing D J, Ma L 2012 Particuology 10 9
[16] Corsi C, D'Amato F, de Rosa M, Modugno G 1999 Eur. Phys. J. D 6 327
-
[1] Gun J, Zhao L C 2011 Gansu Med. J. 30 50 (in Chinese) [郭军, 赵良存 2011 甘肃医药 30 50]
[2] Pikal M J, Shah S 1997 PDA J. Pharm. Sci. Tech. 51 17
[3] Schneid S C, Gieseler H, Kessler W J, Luthra S A, Pika M J 2011 AAPS Pharm. Sci. Tech. 12 379
[4] Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 53301 (in Chinese) [张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 64 53301]
[5] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 54 1927]
[6] Geng H, Liu J G, Zhang Y J, Kan R F, Xu Z Y, Yao L, Ruan J 2014 Acta Phys. Sin. 63 043301 (in Chinese) [耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊 2014 63 043301]
[7] Wang H, Cao Z S, Wang Z Q, Wang L S, Gao W, Zhang W J, Gao X M 2010 Spectrosc. Spect. Anal. 30 1161 (in Chinese) [王欢, 曹振松, 王竹青, 汪六三, 高伟, 张为俊, 高晓明 2010 光谱学与光谱分析 30 1161]
[8] Cai T D, Wang G S, Chen W D, Zhang W J, Gao X M 2009 Spectro sc. Spect. Anal. 29 1463 (in Chinese) [蔡廷栋, 王贵师, 陈卫东, 张为俊, 高晓明 2009 光谱学与光谱分析 29 1463]
[9] Gieseler H, Kessler W J, Finson M, Davis S J, Mulhall P A, Bons V, Debo D J, Pikal M J 2007 Pharm. Technol. 96 1776
[10] Cai T D, Gao G Z, Liu Y 2013 Appl. Opt. 52 7682
[11] Kuu W Y, Nail S L, Sacha G 2009 J. Pharm. Sci. 98 1136
[12] Cai T D, Wang G S, Cao Z S, Zhang W J, Gao X M 2014 Opt. Laser. Eng. 58 48
[13] Cassidy D T, Reid J 1982 Appl. Opt. 21 1185
[14] Mount G H, Rumburg B, Havig J, Lamb B, Westberg H, Yonge D, Johnson K Kincaid R 2002 Atmos. Enviro. 36 1799
[15] Sun X Q, Ewing D J, Ma L 2012 Particuology 10 9
[16] Corsi C, D'Amato F, de Rosa M, Modugno G 1999 Eur. Phys. J. D 6 327
Catalog
Metrics
- Abstract views: 6868
- PDF Downloads: 237
- Cited By: 0