Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A chaotic analyzing method based on the dependence of neighbor sub-sequences in the data series

Qiu Chen-Lin Cheng Li

Citation:

A chaotic analyzing method based on the dependence of neighbor sub-sequences in the data series

Qiu Chen-Lin, Cheng Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ever since the special characteristics hidden in the chaos was discovered, the chaotic behavior has been extensively studied as a ubiquitous and complex nonlinear dynamic phenomenon, which is gradually extending to various disciplines of natural and social science, and the significant values in the theoretical and the practical application have attracted much attention from scholars of different fields in the recent decades. Conventional methods of analyzing chaotic dynamic systems, including the Lyapunov exponent, correlation dimension, Poincar map, unavoidably encounter some common problems, such as reconstruction of the phase space, determination of the linear area, etc. Besides, the current approaches each also possess a poor capability of balancing the direct observation and the quantitative calculation. Based on the fact that the neighbor data relate to each other to some degree, taking those shortages into consideration, aiming at depicting the chaotic features efficiently, a new method of analyzing the complicated chaotic motion is proposed. During the processing of that novel approach, the Euclidean distance is continuously computed to represent the dependence of the adjacent unit, after that, the original complicated array is converted into a simpler series composed of the distance of neighbor sub-sequences with more distinct characteristics. The mean value and the standard deviation of the newborn series are exacted to assist in describing the chaotic changing law. The method is adopted for studying the typical chaotic models, like Logistic model, Chebychev model, Duffing oscillator, Lorenz system, etc., which proves the good performances in explaining the chaotic variation rules in different systems. Based on the model verification, it could be seen that the method could detect the chaotic motion both qualitatively and quantitatively, and the ability for that method to resist the noise is improved up to some degree, what is more, the information about the real model is not required, thereby simplifying the analysis of the complicated chaotic behavior whose authentic model is unavailable. In addition, the method is applied to decomposing the vibration signal to monitor the working condition of the rotating rotor, and the results show that the conditional variation could be detected obviously. The analyses above show that the proposed method, on the basis of the dependence between nearby data, could perform well in observing the chaotic feature in an efficient way which simplifies the operation and clarifies the chaotic variation, moreover, the application potential of this method is worthy of great attention.
      Corresponding author: Qiu Chen-Lin, qiu1205286172@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51175509)
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Zhang X D, Liu X D, Zheng Y, Liu C 2013 Chin.Phys.B 22 030509

    [3]

    Hossein G, Amir H, Azita A 2013 Chin.Phys.B 22 010503

    [4]

    Coelho A L V, Lima C A M 2014 Eng. Appl. Artif. Intel. 36 81

    [5]

    Varney P, Green I 2015 J. Sound Vib. 336 207

    [6]

    Krese B, Govekar E 2013 Transport. Res. C 36 27

    [7]

    Wang J S, Yuan R X, Gao Z W, Wang D J 2011 Chin. Phys. B 20 090506

    [8]

    Mohammad Z K, Ozgur K 2015 Ocean Eng. 100 46

    [9]

    Jin W L 2013 Transport. Res. B 57 191

    [10]

    Sun K H, Yang J L, Ding J F, Sheng L Y 2010 Acta Phys. Sin. 59 8385 (in Chinese) [孙克辉, 杨静利, 丁家峰, 盛利元 2010 59 8385]

    [11]

    Kulp C W 2013 Chaos 23 033110

    [12]

    Look N, Arellano C J, Grabowski A M, McDermott W J, Kram R, Bradley E 2013 Chaos 23 043131

    [13]

    Jiang L P, Xu K J, Qin H Q 2007 J. Vib. Shock 26 49 (in Chinese) [江龙平, 徐可君, 秦海勤 2007 振动与冲击 26 49]

    [14]

    Zhang Y 2013 Chin. Phys. B 22 050502

    [15]

    Leung S Y 2013 Chaos 23 043132

    [16]

    Wang J S, Yuan J, Li Q, Yuan R X 2011 Chin. Phys. B 20 050506

    [17]

    Takens F 1981 Dynamical Systems and Turbulence (Berlin: Spring Verlag) 366

    [18]

    Zhang J, Fan Y Y, Li H M, Sun H Y, Jia M 2011 Chin. J. Comput. Phys. 28 469 (in Chinese) [张菁, 樊养余, 李慧敏, 孙恒义, 贾蒙 2011 计算物理 28 469]

    [19]

    Jiang A H, Zhou P, Zhang Y, Hua H X 2015 J. Vib. Shock 34 79 (in Chinese) [蒋爱华, 周璞, 章艺, 华宏星 2015 振动与冲击 34 79]

    [20]

    Zhang S Q, Li X X, Zhang L G, Hu Y T, Li L 2013 Acta Phys. Sin. 62 110506 (in Chinese) [张淑清, 李新新, 张立国, 胡永涛, 李亮 2013 62 110506]

    [21]

    Li H, Yang Z, Zhang Y M, Wen B C 2011 Acta Phys. Sin. 60 070512 (in Chinese) [李鹤, 杨周, 张义民, 闻邦椿 2011 60 070512]

    [22]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [23]

    Zhang S Q, Zhao Y C, Jia J, Zhang L G, Shangguan H L 2010 Chin. Phys. B 19 060514

    [24]

    Ji C C, Zhu H, Jiang W 2010 Sci. Chin. 55 3069 (in Chinese) [姬翠翠, 朱华, 江炜 2010 中国科学 55 3069]

    [25]

    Gao Z K, Yang Y X, Fang P C, Zou Y, Xia C Y, Du M 2015 Europhys. Lett. 109 30005

    [26]

    Gao Z K, Zhang X W, Jin N D, Donner R V, Marwan N, Kurths J 2013 Europhys. Lett. 103 50004

    [27]

    L L, Li G, Guo L, Meng L, Zou J R, Yang M 2010 Chin. Phys. B 19 080507

    [28]

    May R M 1976 Nature 261 459

    [29]

    Liu Y, Fu C 2006 Control Eng. Chin. 13 377 (in Chinese) [刘严, 付冲 2006 控制工程 13 377]

    [30]

    Tang Y Z, Lou J J, Weng X T, Zhu S J 2014 J. Vib. Shock 33 60 (in Chinese) [唐元璋, 楼京俊, 翁雪涛, 朱石坚 2014 振动与冲击 33 60]

    [31]

    Li C B, Sprott J C, Thio W 2015 Phys. Lett. A 379 888

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Zhang X D, Liu X D, Zheng Y, Liu C 2013 Chin.Phys.B 22 030509

    [3]

    Hossein G, Amir H, Azita A 2013 Chin.Phys.B 22 010503

    [4]

    Coelho A L V, Lima C A M 2014 Eng. Appl. Artif. Intel. 36 81

    [5]

    Varney P, Green I 2015 J. Sound Vib. 336 207

    [6]

    Krese B, Govekar E 2013 Transport. Res. C 36 27

    [7]

    Wang J S, Yuan R X, Gao Z W, Wang D J 2011 Chin. Phys. B 20 090506

    [8]

    Mohammad Z K, Ozgur K 2015 Ocean Eng. 100 46

    [9]

    Jin W L 2013 Transport. Res. B 57 191

    [10]

    Sun K H, Yang J L, Ding J F, Sheng L Y 2010 Acta Phys. Sin. 59 8385 (in Chinese) [孙克辉, 杨静利, 丁家峰, 盛利元 2010 59 8385]

    [11]

    Kulp C W 2013 Chaos 23 033110

    [12]

    Look N, Arellano C J, Grabowski A M, McDermott W J, Kram R, Bradley E 2013 Chaos 23 043131

    [13]

    Jiang L P, Xu K J, Qin H Q 2007 J. Vib. Shock 26 49 (in Chinese) [江龙平, 徐可君, 秦海勤 2007 振动与冲击 26 49]

    [14]

    Zhang Y 2013 Chin. Phys. B 22 050502

    [15]

    Leung S Y 2013 Chaos 23 043132

    [16]

    Wang J S, Yuan J, Li Q, Yuan R X 2011 Chin. Phys. B 20 050506

    [17]

    Takens F 1981 Dynamical Systems and Turbulence (Berlin: Spring Verlag) 366

    [18]

    Zhang J, Fan Y Y, Li H M, Sun H Y, Jia M 2011 Chin. J. Comput. Phys. 28 469 (in Chinese) [张菁, 樊养余, 李慧敏, 孙恒义, 贾蒙 2011 计算物理 28 469]

    [19]

    Jiang A H, Zhou P, Zhang Y, Hua H X 2015 J. Vib. Shock 34 79 (in Chinese) [蒋爱华, 周璞, 章艺, 华宏星 2015 振动与冲击 34 79]

    [20]

    Zhang S Q, Li X X, Zhang L G, Hu Y T, Li L 2013 Acta Phys. Sin. 62 110506 (in Chinese) [张淑清, 李新新, 张立国, 胡永涛, 李亮 2013 62 110506]

    [21]

    Li H, Yang Z, Zhang Y M, Wen B C 2011 Acta Phys. Sin. 60 070512 (in Chinese) [李鹤, 杨周, 张义民, 闻邦椿 2011 60 070512]

    [22]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [23]

    Zhang S Q, Zhao Y C, Jia J, Zhang L G, Shangguan H L 2010 Chin. Phys. B 19 060514

    [24]

    Ji C C, Zhu H, Jiang W 2010 Sci. Chin. 55 3069 (in Chinese) [姬翠翠, 朱华, 江炜 2010 中国科学 55 3069]

    [25]

    Gao Z K, Yang Y X, Fang P C, Zou Y, Xia C Y, Du M 2015 Europhys. Lett. 109 30005

    [26]

    Gao Z K, Zhang X W, Jin N D, Donner R V, Marwan N, Kurths J 2013 Europhys. Lett. 103 50004

    [27]

    L L, Li G, Guo L, Meng L, Zou J R, Yang M 2010 Chin. Phys. B 19 080507

    [28]

    May R M 1976 Nature 261 459

    [29]

    Liu Y, Fu C 2006 Control Eng. Chin. 13 377 (in Chinese) [刘严, 付冲 2006 控制工程 13 377]

    [30]

    Tang Y Z, Lou J J, Weng X T, Zhu S J 2014 J. Vib. Shock 33 60 (in Chinese) [唐元璋, 楼京俊, 翁雪涛, 朱石坚 2014 振动与冲击 33 60]

    [31]

    Li C B, Sprott J C, Thio W 2015 Phys. Lett. A 379 888

  • [1] Xu Zi-Fei, Miao Wei-Pao, Li Chun, Jin Jiang-Tao, Li Shu-Jun. Nonlinear feature extraction and chaos analysis of flow field. Acta Physica Sinica, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [2] Liu Shuang, Tian Song-Tao, Wang Zhen-Chen, Li Jian-Xiong. Chaos of a kind of nonlinear relative rotation system based on the effect of Coulomb friction. Acta Physica Sinica, 2015, 64(6): 064501. doi: 10.7498/aps.64.064501
    [3] Ding Hu, Yan Qiao-Yun, Chen Li-Qun. Chaotic dynamics in the forced nonlinear vibration of an axially accelerating viscoelastic beam. Acta Physica Sinica, 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [4] Li Hai-Bin, Wang Bo-Hua, Zhang Zhi-Qiang, Liu Shuang, Li Yan-Shu. Combination resonance bifurcations and chaos of some nonlinear relative rotation system. Acta Physica Sinica, 2012, 61(9): 094501. doi: 10.7498/aps.61.094501
    [5] Jiang Guo-Ping, Tao Wei-Jun, Huan Shi, Xiao Bo-qi. Design and research of chaotic vibration isolation system under the condition of small displacement. Acta Physica Sinica, 2012, 61(7): 070503. doi: 10.7498/aps.61.070503
    [6] Zhang Xiao-Fang, Chen Zhang-Yao, Bi Qin-Sheng. Evolution from regular movement patterns to chaotic attractors in a nonlinear electrical circuit. Acta Physica Sinica, 2010, 59(5): 3057-3065. doi: 10.7498/aps.59.3057
    [7] Shi Pei-Ming, Liu Bin, Hou Dong-Xiao. Chaotic motion of some relative rotation nonlinear dynamic system. Acta Physica Sinica, 2008, 57(3): 1321-1328. doi: 10.7498/aps.57.1321
    [8] Zou Jian-Long, Ma Xi-Kui. A class of nonlinear phenomena resulting from saturation. Acta Physica Sinica, 2008, 57(2): 720-725. doi: 10.7498/aps.57.720
    [9] Meng Juan, Wang Xing-Yuan. Phase synchronization of chaotic systems based on nonlinear observers. Acta Physica Sinica, 2007, 56(9): 5142-5148. doi: 10.7498/aps.56.5142
    [10] Yue Li-Juan, Shen Ke, Xu Ming-Qi. Controlling optical spatiotemporal chaos of coupled phase-conjugate map system with nonlinear feedback. Acta Physica Sinica, 2007, 56(8): 4378-4382. doi: 10.7498/aps.56.4378
    [11] Yan Sen-Lin. Nonlinear evolution of chaotic signal transmission in optical fiber. Acta Physica Sinica, 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [12] Yao Li-Na, Gao Jin-Feng, Liao Ni-Huan. Synchronization of a class of chaotic systems using nonlinear observers. Acta Physica Sinica, 2006, 55(1): 35-41. doi: 10.7498/aps.55.35
    [13] Deng Cheng-Liang, Shao Ming-Zhu, Luo Shi-Yu. Interaction between charged particle and strained superlattice and chaotic behaviours of the system. Acta Physica Sinica, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [14] Gao Chuan-Hou, Zhou Zhi-Min, Shao Zhi-Jiang. Chaotic analysis for blast furnace ironmaking process. Acta Physica Sinica, 2005, 54(4): 1490-1494. doi: 10.7498/aps.54.1490
    [15] Yu Hong-Jie, Liu Yan-Zhu. Synchronization of symmetrically nonlinear-coupled chaotic systems. Acta Physica Sinica, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [16] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [17] Wang Fu-Peng, Wang Zan-Ji, Guo Jing-Bo. . Acta Physica Sinica, 2002, 51(3): 474-481. doi: 10.7498/aps.51.474
    [18] WANG FU-PING, GUO JING-BO, WANG ZAN-JI, XIAO DA-CHUAN, LI MAO-TANG. HARMONIC SIGNAL EXTRACTION FROM STRONG CHAOTIC INTERFERENCE. Acta Physica Sinica, 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
    [19] LI GUO-HUI, ZHOU SHI-PING, XU DE-MING, LAI JIAN-WEN. AN OCCASIONAL LINEAR FEEDBACK APPROACH TO CONTROL CHAOS. Acta Physica Sinica, 2000, 49(11): 2123-2128. doi: 10.7498/aps.49.2123
    [20] WU WEI-GEN, GU TIAN-XIANG. NONLINEAR FEEDBACK FOLLOWING CONTROL OF CHAOTIC SYSTEMS. Acta Physica Sinica, 2000, 49(10): 1922-1925. doi: 10.7498/aps.49.1922
Metrics
  • Abstract views:  6610
  • PDF Downloads:  302
  • Cited By: 0
Publishing process
  • Received Date:  21 August 2015
  • Accepted Date:  22 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map