Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A novel method based on the fuzzy C-means clustering to calculate the maximal Lyapunov exponent from small data

Zhou Shuang Feng Yong Wu Wen-Yuan Wang Wei-Hua

Citation:

A novel method based on the fuzzy C-means clustering to calculate the maximal Lyapunov exponent from small data

Zhou Shuang, Feng Yong, Wu Wen-Yuan, Wang Wei-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to reduce errors caused by human factors to identify the linear region, we propose a new method based on the fuzzy C-means clustering for calculating the maximum Lyapunov exponent from small data. The method based on the changing characteristic of divergence index curve is used to identify the linear region. Firstly, the divergence index data are calculated from the small data algorithm for the given chaotic time series. Secondly, the fuzzy C-means clustering method is used for dividing the data into two classes (unsaturated and saturated data), and the unsaturated data are retained. Thirdly, the retained data are divided by the same clustering method into three classes (positive fluctuation data, zero fluctuation data and negative fluctuation data), and the zero fluctuation data are retained. Fourthly, the 3$ criterion is used for excluding gross errors to retain the valid from the selected data. Finally, the regression analysis and statistical test are used to identify the linear region from the valid data. The effectiveness of the proposed method can be demonstrated by the famous chaotic systems of Logistic and Henon. The calculated results are closr to the theoretical values than the subjective method. Experimental results show that the proposed new approach is easier to operate, more efficient and more accurate as compared with the subjective recognition. But this method has its own shortcomings. (1) As the new method is verified by the simulation experiment, there exists no strict mathematical proof. (2) Since the difference algorithm is used in this new method, it will miss some detailed information in some cases. (3) The calculation accuracy still needs to be improved, so this method only serves as a reference to detect the linear region, it can not be applied to high precision engineering field. Considering the deficiencies of the new method, we will make further research to improve the calculation method for maximum Lyapunovexponent, so as to make it solve the real-time problem of the signal detection, and find the accurate location of abrupt climate change in the field of meteorology, to provide accurate satellite launch safety period in the field of space weather and other aspects. In short, studying the largest Lyapunov exponent from chaotic time series has a wide application prospect and practical significance.
      Corresponding author: Zhou Shuang, zhoushuang@cigit.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11301524) and the Chongqing Academicians Special Project Based on the Basic and Frontier Reaearches, China (Grant No. cstc2015jcyjys40001).
    [1]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits: Principle, Design and Its Application in Communications (Xian: Xidian University Press) p4 (in Chinese) [禹思敏 2011 混沌系统与混沌电路: 原理、设计及其在通信中的应用 (西安: 西安电子科技大学出版社) 第4页]

    [2]

    Wang W J, Ye M, Chen X W 1994 Advances in Water Science 2 87 (in Chinese) [王文均, 叶敏, 陈显维 1994 水科学进展 2 87]

    [3]

    Zhou S, Feng Y, Wu W Y, Li Y, Liu J 2014 Res. Astron. Astronphys. 14 104

    [4]

    L J H, Zhan Y, Lu J A 2000 Proceedings of the CSEE 20 80 (in Chinese) [吕金虎, 占勇, 陆君安 2000 中国电机工程学报 20 80]

    [5]

    Packard N H, Crutchfield J, Famrmer J 1980 Phys. Rev. Lett. 45 712

    [6]

    Yu S M 2008 Acta Phys. Sin. 57 3374 (in Chinese) [禹思敏 2008 57 3374]

    [7]

    Yu S M, Tang W K S, L J H, Chen G R 2008 IEEE T. Circuits - II 55 1168

    [8]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE T. Circuits - I 61 854

    [9]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE T. Circuits - I 61 2380

    [10]

    Li Q X, Li K J 2007 Publ. Astron. Soc. Jpn. 59 983

    [11]

    Xian M, Zhuang Z W, Xiao S P, Guo G R 1998 Journal of National University of Defense Techonlogy 20 60 (in Chinese) [鲜明, 庄钊文, 肖顺平, 郭桂蓉 1998 国防科技大学学报 20 60]

    [12]

    L J H, Lu J A, Chen S H 2002 Chaotic time series analysis and its application (Wuhan: Wuhan University Press) p73 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用 (武汉: 武汉大学出版社) 第73页]

    [13]

    Hubertus F, Udwadia F E, Proskurowski W 1997 Physica D 101 1

    [14]

    Shimada I, Nagashima T 1979 Prog. Theor. Phys. 61 1605

    [15]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [16]

    Briggs K 1990 Phys. Lett. A 151 27

    [17]

    Rosenstein M T, Collins J J, de Luca C J 1993 Physica D 65 117

    [18]

    Barna G, Tsuda I 1993 Phys. Lett. A 175 421

    [19]

    Jiang H F, Ma H J, Wei X Y, Wen W G 2006 Journal of the China Railway Society 28 63 (in Chinese) [蒋海峰, 马瑞军, 魏学业, 温伟刚 2006 铁道学报 28 63]

    [20]

    Xu X K 2008 Ph.D.Dissertation (Dalian: Dalian Maritime University) (in Chinese) [许小可 2008 博士论文 (大连: 大连海事大学)]

    [21]

    Kantz H 1994 Phys. Lett. A 185 77

    [22]

    Liang Y, Meng Q, Lu J R 2006 Technical Acoustics 25 463 (in Chinese) [梁勇, 孟桥, 陆佶人 2006 声学技术 25 463]

    [23]

    Yao T L 2013 Ph.D.Dissertation (Shanghai: East China University of Science and Technology) (in Chinese) [姚天亮 2013 博士论文 (上海: 华东理工大学)]

    [24]

    Yang S Q, Zhang X H, Zhao C A 2000 Acta Phys. Sin. 49 636 (in Chinese) [杨绍清, 章新华, 赵长安 2000 49 636]

    [25]

    Lu S, Wang H Y 2006 Acta Phys. Sin. 55 572 (in Chinese) [卢山, 王海燕 2006 55 572]

    [26]

    Lu Z B 2008 Ph. D. Dissertation (Wuhan: Chinese People's Liberation Army Navy Project University) (in Chinese) [陆振波 2008 博士论文 (武汉: 中国人民解放军海军工程大学)]

    [27]

    Yang Y F, Wu M J, Gao Z, Wu Y F, Ren X M 2012 Journal of Vibration Measurement Diagnosis 32 371 (in Chinese) [杨永锋, 仵敏娟, 高喆, 吴亚锋, 任兴民 2012 振动、测试与诊断 32 371]

    [28]

    Jain A K 2010 Pattern Recogn. Lett. 31 651

    [29]

    May R M 1976 Nature 261 459

    [30]

    Hnon M 1976 Commun. Math. Phys. 50 69

    [31]

    Zhang Y P, Sun W H, Liu C A 2010 Chin. Phys. B 19 050512

  • [1]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits: Principle, Design and Its Application in Communications (Xian: Xidian University Press) p4 (in Chinese) [禹思敏 2011 混沌系统与混沌电路: 原理、设计及其在通信中的应用 (西安: 西安电子科技大学出版社) 第4页]

    [2]

    Wang W J, Ye M, Chen X W 1994 Advances in Water Science 2 87 (in Chinese) [王文均, 叶敏, 陈显维 1994 水科学进展 2 87]

    [3]

    Zhou S, Feng Y, Wu W Y, Li Y, Liu J 2014 Res. Astron. Astronphys. 14 104

    [4]

    L J H, Zhan Y, Lu J A 2000 Proceedings of the CSEE 20 80 (in Chinese) [吕金虎, 占勇, 陆君安 2000 中国电机工程学报 20 80]

    [5]

    Packard N H, Crutchfield J, Famrmer J 1980 Phys. Rev. Lett. 45 712

    [6]

    Yu S M 2008 Acta Phys. Sin. 57 3374 (in Chinese) [禹思敏 2008 57 3374]

    [7]

    Yu S M, Tang W K S, L J H, Chen G R 2008 IEEE T. Circuits - II 55 1168

    [8]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE T. Circuits - I 61 854

    [9]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE T. Circuits - I 61 2380

    [10]

    Li Q X, Li K J 2007 Publ. Astron. Soc. Jpn. 59 983

    [11]

    Xian M, Zhuang Z W, Xiao S P, Guo G R 1998 Journal of National University of Defense Techonlogy 20 60 (in Chinese) [鲜明, 庄钊文, 肖顺平, 郭桂蓉 1998 国防科技大学学报 20 60]

    [12]

    L J H, Lu J A, Chen S H 2002 Chaotic time series analysis and its application (Wuhan: Wuhan University Press) p73 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用 (武汉: 武汉大学出版社) 第73页]

    [13]

    Hubertus F, Udwadia F E, Proskurowski W 1997 Physica D 101 1

    [14]

    Shimada I, Nagashima T 1979 Prog. Theor. Phys. 61 1605

    [15]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [16]

    Briggs K 1990 Phys. Lett. A 151 27

    [17]

    Rosenstein M T, Collins J J, de Luca C J 1993 Physica D 65 117

    [18]

    Barna G, Tsuda I 1993 Phys. Lett. A 175 421

    [19]

    Jiang H F, Ma H J, Wei X Y, Wen W G 2006 Journal of the China Railway Society 28 63 (in Chinese) [蒋海峰, 马瑞军, 魏学业, 温伟刚 2006 铁道学报 28 63]

    [20]

    Xu X K 2008 Ph.D.Dissertation (Dalian: Dalian Maritime University) (in Chinese) [许小可 2008 博士论文 (大连: 大连海事大学)]

    [21]

    Kantz H 1994 Phys. Lett. A 185 77

    [22]

    Liang Y, Meng Q, Lu J R 2006 Technical Acoustics 25 463 (in Chinese) [梁勇, 孟桥, 陆佶人 2006 声学技术 25 463]

    [23]

    Yao T L 2013 Ph.D.Dissertation (Shanghai: East China University of Science and Technology) (in Chinese) [姚天亮 2013 博士论文 (上海: 华东理工大学)]

    [24]

    Yang S Q, Zhang X H, Zhao C A 2000 Acta Phys. Sin. 49 636 (in Chinese) [杨绍清, 章新华, 赵长安 2000 49 636]

    [25]

    Lu S, Wang H Y 2006 Acta Phys. Sin. 55 572 (in Chinese) [卢山, 王海燕 2006 55 572]

    [26]

    Lu Z B 2008 Ph. D. Dissertation (Wuhan: Chinese People's Liberation Army Navy Project University) (in Chinese) [陆振波 2008 博士论文 (武汉: 中国人民解放军海军工程大学)]

    [27]

    Yang Y F, Wu M J, Gao Z, Wu Y F, Ren X M 2012 Journal of Vibration Measurement Diagnosis 32 371 (in Chinese) [杨永锋, 仵敏娟, 高喆, 吴亚锋, 任兴民 2012 振动、测试与诊断 32 371]

    [28]

    Jain A K 2010 Pattern Recogn. Lett. 31 651

    [29]

    May R M 1976 Nature 261 459

    [30]

    Hnon M 1976 Commun. Math. Phys. 50 69

    [31]

    Zhang Y P, Sun W H, Liu C A 2010 Chin. Phys. B 19 050512

  • [1] Zhang Hong-Bin, Sun Xiao-Duan, He Yu-Long. Analysis and prediction of complex dynamical characteristics of short-term traffic flow. Acta Physica Sinica, 2014, 63(4): 040505. doi: 10.7498/aps.63.040505
    [2] Zhang Wen-Chao, Tan Si-Chao, Gao Pu-Zhen. Chaotic forecasting of natural circulation flow instabilities under rolling motion based on lyapunov exponents. Acta Physica Sinica, 2013, 62(6): 060502. doi: 10.7498/aps.62.060502
    [3] Zang Hong-Yan, Fan Xiu-Bin, Min Le-Quan, Han Dan-Dan. Research of Lyapunov exponent of S-boxes. Acta Physica Sinica, 2012, 61(20): 200508. doi: 10.7498/aps.61.200508
    [4] Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng. The largest Lyapunov exponent and the turbulent fluctuation of the time series from air turbulent jets. Acta Physica Sinica, 2012, 61(23): 234704. doi: 10.7498/aps.61.234704
    [5] Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica, 2012, 61(6): 060503. doi: 10.7498/aps.61.060503
    [6] Yang Yong-Feng, Wu Ya-Feng, Ren Xing-Min, Qiu Yan. The effect of random noise for empirical mode decomposition of nonlinear signals. Acta Physica Sinica, 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [7] Zhang Xiao-Dan, Liu Xiang, Zhao Pin-Dong. Methods for calculating the main-axis Lyapunov exponents of a type of chaotic systems with delay. Acta Physica Sinica, 2009, 58(7): 4415-4420. doi: 10.7498/aps.58.4415
    [8] Yang Yong-Feng, Wu Ya-Feng, Ren Xing-Min, Qin Wei-Yang, Zhi Xi-Zhe, Qiu Yan. The largest Lyapunov prediction method for the end issue of empirical mode decomposition. Acta Physica Sinica, 2009, 58(6): 3742-3746. doi: 10.7498/aps.58.3742
    [9] Zhang Yong, Guan Wei. Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica, 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [10] He Si-Hua, Yang Shao-Qing, Shi Ai-Guo, Li Tian-Wei. Detection of ship targets on the sea surface based on Lyapunov exponents of image block. Acta Physica Sinica, 2009, 58(2): 794-801. doi: 10.7498/aps.58.794
    [11] Niu Yu-Jun, Xu Wei, Rong Hai-Wu, Wang Liang, Feng Jin-Qian. Chaos prediction in the Duffing-type system with non-smooth periodic perturbation and bounded parametric excitation. Acta Physica Sinica, 2008, 57(12): 7535-7540. doi: 10.7498/aps.57.7535
    [12] Wang Xing-Yuan, He Yi-Jie. Projective synchronization of the fractional order unified system. Acta Physica Sinica, 2008, 57(3): 1485-1492. doi: 10.7498/aps.57.1485
    [13] Liu Fu-Cai, Sun Li-Ping, Liang Xiao-Ming. Prediction of chaotic time series based on hierarchical fuzzy-clustering. Acta Physica Sinica, 2006, 55(7): 3302-3306. doi: 10.7498/aps.55.3302
    [14] Yang Xiao-Li, Xu Wei, Sun Zhong-Kui. Influence of harmonic and bounded noise excitations on chaotic motion of Duffing oscillator with homoclinic and heteroclinic orbits. Acta Physica Sinica, 2006, 55(4): 1678-1686. doi: 10.7498/aps.55.1678
    [15] Li Shuang, Xu Wei, Li Rui-Hong. Chaos control of Duffing systems by random phase. Acta Physica Sinica, 2006, 55(3): 1049-1054. doi: 10.7498/aps.55.1049
    [16] Tao Chao-Hai, Lu Jun-An. Speed feedback synchronization of a chaotic system. Acta Physica Sinica, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [17] Tao Chao-Hai, Lu Jun-An, Lv Jin-Hu. . Acta Physica Sinica, 2002, 51(7): 1497-1501. doi: 10.7498/aps.51.1497
    [18] Xie Yong, Xu Jian-Xue, Yang Hong-Jun, Hu San-Jue. . Acta Physica Sinica, 2002, 51(2): 205-214. doi: 10.7498/aps.51.205
    [19] LIU HAI-FENG, ZHAO YAN-YAN, DAI ZHENG-HUA, GONG XIN, YU ZUN-HONG. CALCULATION OF THE LARGEST LYAPUNOV EXPONENT IN THE DISCRETE DYNAMICAL SYSTEM WITH WAVELET ANALYSIS. Acta Physica Sinica, 2001, 50(12): 2311-2317. doi: 10.7498/aps.50.2311
    [20] Shi Peng-liang, Hu Gang, Xu Li-mei. The Largest Lyapunov Exponent of Coupled Map Lattice Systems   . Acta Physica Sinica, 2000, 49(1): 24-29. doi: 10.7498/aps.49.24
Metrics
  • Abstract views:  7194
  • PDF Downloads:  441
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2015
  • Accepted Date:  16 October 2015
  • Published Online:  20 January 2016

/

返回文章
返回
Baidu
map