Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of emergence of target wave and spiral wave in neuronal network induced by gradient coupling

Xu Ying Wang Chun-Ni Jin Wu-Yin Ma Jun

Citation:

Investigation of emergence of target wave and spiral wave in neuronal network induced by gradient coupling

Xu Ying, Wang Chun-Ni, Jin Wu-Yin, Ma Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Distinct rhythm and self-organization in collective electric activities of neurons could be observed in a neuronal system composed of a large number of neurons. It is found that target wave can be induced in the network by imposing continuous local periodical force or introducing local heterogeneity in the network; and these target waves can regulate the wave propagation and development as pacemaker' in the network or media. A regular neuronal network is constructed in two-dimensional space, in which the local kinetics can be described by Hindmarsh-Rose neuron model, the emergence and development of ordered waves are investigated by introducing gradient coupling between neurons. For simplicity, the center area is selected by the largest coupling intensity, which is gradually decreased at certain step with increasing distance from the center area. It is found that the spiral wave and/or the target wave can be induced by appropriate selection of gradient coupling, and both waves can occupy the network, and then the collective behaviors of the network can be regulated to show ordered states. Particularly, the ordered wave can be effective to dominate the collective behavior of neuronal networks, even as the stochastic values are used for initial states. These results associated with the gradient coupling on the regulating collective behaviors could be useful to understand the self-organization behaviors in neuronal networks.
      Corresponding author: Ma Jun, hyperchaos@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11265008, 11365014).
    [1]

    Shilnikov S 2012 Nonlinear Dyn. SI 68 305

    [2]

    Rulkov N F 2002 Phys. Rev. E 65 041922

    [3]

    Storace M, Linaro D, de Lange E 2008 Chaos 18 033128

    [4]

    Huang X H, Hu G 2014 Chinese Phys. B 23 0108703

    [5]

    Wang M L, Wang J S 2015 Acta Phys. Sin. 64 108701(in Chinese) [王美丽, 王俊松 2015 64 108701]

    [6]

    Jiang M, Zhu J, Liu Y P, Yang M P, Tian C P, Jiang S, Wang Y H, Guo H, Wang K Y, Shu Y S 2012 PLoS Biol. 10 e1001324

    [7]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [8]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond B Biol. Sci. 221 87

    [9]

    Ibarz B, Casado J M, Sanjun M A F 2011 Phys. Rep. 501 1

    [10]

    Zhang LS, Gu W F, Hu G, Mi Y Y 2014 Chinese Phys. B 23 0108902

    [11]

    Kitajima H, Yoshihara T 2012 Physica D 241 1804

    [12]

    Jia B 2014 Chin. Phys. B 23 050510

    [13]

    Storace M, Linaro D, de Lange E 2008 Chaos 18 033128

    [14]

    Wig G S, Schlaggar B L, Petersen S E 2011 Ann N. Y. Acad. Sci. 1224 126

    [15]

    Wang H X, Wang Q Y, Zheng Y H 2014 Sci. China Tech. Sci. 57 872

    [16]

    Torrealdea FJ, Sarasola C, d'Anjou A 2009 Chaos, Solitons Fract. 40 60

    [17]

    Yu L C, Liu L W 2014 Phys. Rev. E 89 032725

    [18]

    Wang R B, Zhang Z K, Qu J Y, Cao J T 2011 IEEE T. Neural. Networ. 22 1097

    [19]

    Ma J, Song X L, Jin W Y, Wang C N 2015 Chaos, Solition. Fract. 80 31

    [20]

    Jia B, Gu H G, Song S L 2013 Sci. China Phys. Mech. 43 518

    [21]

    Gu H G, Chen S G 2014 Sci. China Tech. Sci 57 864

    [22]

    Tang J, Luo J M, Ma J 2013 PLoS One 8 080324

    [23]

    Yu Y G, Liu F, Wang W 2001 Biol. Cybern. 84 227

    [24]

    Wang Q Y, Zhang H H, Perc M, Chen G R 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3979

    [25]

    Perc M 2008 Phys. Rev. E 78 036105

    [26]

    Yılmaz E, Uzuntarla M, Ozer M, Perc M 2013 Physica A 392 5735

    [27]

    Zhang J Q, Wang C D, Wang M S, Huang S F 2011 Nerocomput. 74 2961

    [28]

    Wang Q Y, Zheng Y H, Ma J 2013 Chaos Solitons Fractals 56 19

    [29]

    Zeltser L M, Seeley R J, Tschoep M H 2012 Nature Neurosci. 15 1336

    [30]

    Elbasiouny Sherif M 2014 J. Appl. Physiol. 117 1243

    [31]

    Yang Z Q, Hao L J 2014 Sci. China Tech. Sci. 57 885

    [32]

    Wang Q Y, Chen G R, Perc M 2011 PLoS One 6 e15851

    [33]

    Xie Y, Kang Y M, Liu Y, Wu Y 2014 Sci. China Tech. Sci. 57 914

    [34]

    Jiao X F, Zhu D F 2014 Sci. China Tech. Sci. 57 923

    [35]

    Gu H G, Chen S G 2014 Sci. China Tech. Sci. 57 864

    [36]

    Qin H X, Wu Y, Wang C N, Ma J 2015 Commun. Nonlinear Sci. Numer. Simulat. 23 164

    [37]

    Sun X J, Shi X 2014 Sci. China Tech. Sci. 57 879

    [38]

    Baghdadi G, Jafari S, Sprott J C, Towhidkhah F, Hashemi Golpayegani M R 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 174

    [39]

    Ren G D, Wu G, Ma J, Chen Y 2015 Acta Phys. Sin. 64 058702(in Chinese) [任国栋, 武刚, 马军, 陈旸 2015 64 058702]

    [40]

    Qin H X, Ma J, Jin W Y, Wang C N 2014 Sci. China Tech. Sci. 57 936

    [41]

    Zhang L S, Liao X H, Mi Y Y, Qian Y, Hu G 2014 Chin. Phys. B 23 078906

    [42]

    Li J J, Wu Y, Du M M, Liu W M 2015 Acta Phys. Sin. 64 030503(in Chinese) [李佳佳, 吴莹, 独盟盟, 刘伟明 2015 64 030503]

    [43]

    Ma J, Wang C N, Ying H P, Chu R T 2013 Sci. China Phys. Mech. Astro. 56 1126

    [44]

    Pan J T, Cai M C, Li B W, Zhang H 2013 Phys. Rev. E 87 062907

    [45]

    Gao X, Zhang H, Zykov V, Bodenschatz E 2014 New J. Phys. 89 022920

    [46]

    Li B W, Zhang H, Ying H P 2009 Phys. Rev. E 79 026220

    [47]

    Ma J, Wu Y, Wu N J, Guo H Y 2013 Sci. China Phys. Mech. Astro. 56 952

    [48]

    Ma J, Liu Q R, Ying H P, Wu Y 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1665

  • [1]

    Shilnikov S 2012 Nonlinear Dyn. SI 68 305

    [2]

    Rulkov N F 2002 Phys. Rev. E 65 041922

    [3]

    Storace M, Linaro D, de Lange E 2008 Chaos 18 033128

    [4]

    Huang X H, Hu G 2014 Chinese Phys. B 23 0108703

    [5]

    Wang M L, Wang J S 2015 Acta Phys. Sin. 64 108701(in Chinese) [王美丽, 王俊松 2015 64 108701]

    [6]

    Jiang M, Zhu J, Liu Y P, Yang M P, Tian C P, Jiang S, Wang Y H, Guo H, Wang K Y, Shu Y S 2012 PLoS Biol. 10 e1001324

    [7]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [8]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond B Biol. Sci. 221 87

    [9]

    Ibarz B, Casado J M, Sanjun M A F 2011 Phys. Rep. 501 1

    [10]

    Zhang LS, Gu W F, Hu G, Mi Y Y 2014 Chinese Phys. B 23 0108902

    [11]

    Kitajima H, Yoshihara T 2012 Physica D 241 1804

    [12]

    Jia B 2014 Chin. Phys. B 23 050510

    [13]

    Storace M, Linaro D, de Lange E 2008 Chaos 18 033128

    [14]

    Wig G S, Schlaggar B L, Petersen S E 2011 Ann N. Y. Acad. Sci. 1224 126

    [15]

    Wang H X, Wang Q Y, Zheng Y H 2014 Sci. China Tech. Sci. 57 872

    [16]

    Torrealdea FJ, Sarasola C, d'Anjou A 2009 Chaos, Solitons Fract. 40 60

    [17]

    Yu L C, Liu L W 2014 Phys. Rev. E 89 032725

    [18]

    Wang R B, Zhang Z K, Qu J Y, Cao J T 2011 IEEE T. Neural. Networ. 22 1097

    [19]

    Ma J, Song X L, Jin W Y, Wang C N 2015 Chaos, Solition. Fract. 80 31

    [20]

    Jia B, Gu H G, Song S L 2013 Sci. China Phys. Mech. 43 518

    [21]

    Gu H G, Chen S G 2014 Sci. China Tech. Sci 57 864

    [22]

    Tang J, Luo J M, Ma J 2013 PLoS One 8 080324

    [23]

    Yu Y G, Liu F, Wang W 2001 Biol. Cybern. 84 227

    [24]

    Wang Q Y, Zhang H H, Perc M, Chen G R 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3979

    [25]

    Perc M 2008 Phys. Rev. E 78 036105

    [26]

    Yılmaz E, Uzuntarla M, Ozer M, Perc M 2013 Physica A 392 5735

    [27]

    Zhang J Q, Wang C D, Wang M S, Huang S F 2011 Nerocomput. 74 2961

    [28]

    Wang Q Y, Zheng Y H, Ma J 2013 Chaos Solitons Fractals 56 19

    [29]

    Zeltser L M, Seeley R J, Tschoep M H 2012 Nature Neurosci. 15 1336

    [30]

    Elbasiouny Sherif M 2014 J. Appl. Physiol. 117 1243

    [31]

    Yang Z Q, Hao L J 2014 Sci. China Tech. Sci. 57 885

    [32]

    Wang Q Y, Chen G R, Perc M 2011 PLoS One 6 e15851

    [33]

    Xie Y, Kang Y M, Liu Y, Wu Y 2014 Sci. China Tech. Sci. 57 914

    [34]

    Jiao X F, Zhu D F 2014 Sci. China Tech. Sci. 57 923

    [35]

    Gu H G, Chen S G 2014 Sci. China Tech. Sci. 57 864

    [36]

    Qin H X, Wu Y, Wang C N, Ma J 2015 Commun. Nonlinear Sci. Numer. Simulat. 23 164

    [37]

    Sun X J, Shi X 2014 Sci. China Tech. Sci. 57 879

    [38]

    Baghdadi G, Jafari S, Sprott J C, Towhidkhah F, Hashemi Golpayegani M R 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 174

    [39]

    Ren G D, Wu G, Ma J, Chen Y 2015 Acta Phys. Sin. 64 058702(in Chinese) [任国栋, 武刚, 马军, 陈旸 2015 64 058702]

    [40]

    Qin H X, Ma J, Jin W Y, Wang C N 2014 Sci. China Tech. Sci. 57 936

    [41]

    Zhang L S, Liao X H, Mi Y Y, Qian Y, Hu G 2014 Chin. Phys. B 23 078906

    [42]

    Li J J, Wu Y, Du M M, Liu W M 2015 Acta Phys. Sin. 64 030503(in Chinese) [李佳佳, 吴莹, 独盟盟, 刘伟明 2015 64 030503]

    [43]

    Ma J, Wang C N, Ying H P, Chu R T 2013 Sci. China Phys. Mech. Astro. 56 1126

    [44]

    Pan J T, Cai M C, Li B W, Zhang H 2013 Phys. Rev. E 87 062907

    [45]

    Gao X, Zhang H, Zykov V, Bodenschatz E 2014 New J. Phys. 89 022920

    [46]

    Li B W, Zhang H, Ying H P 2009 Phys. Rev. E 79 026220

    [47]

    Ma J, Wu Y, Wu N J, Guo H Y 2013 Sci. China Phys. Mech. Astro. 56 952

    [48]

    Ma J, Liu Q R, Ying H P, Wu Y 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1665

  • [1] Huang Zhi-Jing, Li Qian-Yun, Bai Jing, Tang Guo-Ning. Entropy measurement of ordered patterns in neuronal network with repulsive coupling. Acta Physica Sinica, 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [2] Wang Peng, Li Qian-Yun, Tang Guo-Ning. Spontaneous generation of spiral wave in the array of Hindmarsh-Rose neurons. Acta Physica Sinica, 2018, 67(3): 030502. doi: 10.7498/aps.67.20172140
    [3] Wang Peng, Li Qian-Yun, Huang Zhi-Jing, Tang Guo-Ning. Spontaneous formation of ordered waves in chaotic neuronal network with excitory-inhibitory connections. Acta Physica Sinica, 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [4] Gao Ji-Hua, Shi Wen-Mao, Tang Yan-Feng, Xiao Qi, Yang Hai-Tao. Oscillatory frequencies in spatiotemporal system with local inhomogeneity. Acta Physica Sinica, 2016, 65(15): 150503. doi: 10.7498/aps.65.150503
    [5] Li Wei-Heng, Li Wei-Xin, Pan Fei, Tang Guo-Ning. Transformation of spiral wave to plan wave in the two layers of coupled excitable media. Acta Physica Sinica, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [6] Sun Xiao-Juan, Yang Bai-Hua, Wu Ye, Xiao Jing-Hua. Effects of arrangement of heterogeneous neurons on frequency synchronization of a ring-coupled neuronal network. Acta Physica Sinica, 2014, 63(18): 180507. doi: 10.7498/aps.63.180507
    [7] Qiao Cheng-Gong, Wang Li-Li, Li Wei-Heng, Tang Guo-Ning. Potassium diffusive coupling-induced the variation of spiral wave in cardiac tissues. Acta Physica Sinica, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [8] Chen Xing-Ji, Qiao Cheng-Gong, Wang Li-Li, Zhou Zhen-Wei, Tian Tao-Tao, Tang Guo-Ning. Evolution of spiral waves in indirectly coupled excitable medium with time-delayed coupling. Acta Physica Sinica, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [9] Hu Bo-Lin, Ma Jun, Li Fan, Pu Zhong-Sheng. Mechanism of target wave excited by current with diversity. Acta Physica Sinica, 2013, 62(5): 058701. doi: 10.7498/aps.62.058701
    [10] Zhao Long, Yang Ji-Ping, Zheng Yan-Hong. Modulation of nonlinear coupling on the synchronization induced by linear coupling. Acta Physica Sinica, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [11] Dong Li-Fang, Bai Zhan-Guo, He Ya-Feng. Sparse and dense spiral waves in heterogeneous excitable media. Acta Physica Sinica, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [12] Kuang Yu-Lan, Tang Guo-Ning. Suppressions of spiral waves and spatiotemporal chaos in cardiac tissue. Acta Physica Sinica, 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [13] Gao Ji-Hua, Xie Wei-Miao, Gao Jia-Zhen, Yang Hai-Peng, Ge Zao-Chuan. Amplitude spiral wave in coupled complex Ginzburg-Landau equation. Acta Physica Sinica, 2012, 61(13): 130506. doi: 10.7498/aps.61.130506
    [14] Chen Xing-Ji, Tian Tao-Tao, Zhou Zhen-Wei, Hu Yi-Bo, Tang Guo-Ning. Synchronization of two spiral waves interacting through a passive medium. Acta Physica Sinica, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [15] Zhou Zhen-Wei, Chen Xing-Ji, Tian Tao-Tao, Tang Guo-Ning. Study on the control of spiral waves in coupled excitable media. Acta Physica Sinica, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [16] Ma Jun, Xie Zhen-Bo, Chen Jiang-Xing. Numerical study of the death and breakup of spiral wave in the networks of thermosensitive neurons. Acta Physica Sinica, 2012, 61(3): 038701. doi: 10.7498/aps.61.038701
    [17] Wei Hai-Ming, Tang Guo-Ning. Numerical simulation study on effects of alternansbehavior on spiral waves. Acta Physica Sinica, 2011, 60(4): 040504. doi: 10.7498/aps.60.040504
    [18] Tang Dong-Ni, Zhang Xu, Ren Wei, Tang Guo-Ning. A ring-like heterogeneous medium-induced self-sustained target waves in excitable media. Acta Physica Sinica, 2010, 59(8): 5313-5318. doi: 10.7498/aps.59.5313
    [19] Gan Zheng-Ning, Ma Jun, Zhang Guo-Yong, Chen Yong. Instability of spiral wave in small-world networks. Acta Physica Sinica, 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [20] Ma Jun, Jin Wu-Yin, Li Yan-Long, Chen Yong. Suppression of meandering spiral waves in the excitable media due to a perturbation with stochastic phase. Acta Physica Sinica, 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
Metrics
  • Abstract views:  6028
  • PDF Downloads:  418
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2015
  • Accepted Date:  04 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map