Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical modulation characteristics of VO2 thin film due to electric field induced phase transition in the FTO/VO2/FTO structure

Hao Ru-Long Li Yi Liu Fei Sun Yao Tang Jia-Yin Chen Pei-Zu Jiang Wei Wu Zheng-Yi Xu Ting-Ting Fang Bao-Ying Wang Xiao-Hua Xiao Han

Citation:

Optical modulation characteristics of VO2 thin film due to electric field induced phase transition in the FTO/VO2/FTO structure

Hao Ru-Long, Li Yi, Liu Fei, Sun Yao, Tang Jia-Yin, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Xu Ting-Ting, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • VO2 thin films have been studied for their semiconductor-metal reversible transition from the monoclinic to the rutile structure, where the electrical and optical properties undergo a drastic change by increasing the temperature or by applying a voltage. VO2 film is becoming a promising material for optical switch, optical storage, optical modulator, smart window, and micro-bolometer. The preparation procedures of the FTO/VO2/FTO structure in detail are as follows: First, the F-doped SnO2 conductive glass (FTO) substrates are cleaned sequentially in acetone, ethanol, and deionized water for 10 min using an ultrasonic cleaning equipment at a frequency of 20 kHz. When the FTO substrates was cleaned, they are dried with nitrogen. Second, the dried FTO substrates are placed in the chamber of a DC magnetron sputtering system equipped with a high-purity metal target of V (99.9%). After argon (99.999%) of 80 sccm flux was discharged with the current of 2 A and the voltage of 400 V for 2 min, the vanadium films are deposited on the FTO substrates. Third, the prepared vanadium films are annealed for different annealing time in an atmosphere composed of different proportions of nitrogen-oxygen. Then another layer thickness of 350 nm of FTO conductive film is deposited on the VO2 thin film by using the plasma enhanced chemical vapor deposition method. Finally, different sizes of the FTO/VO2/FTO structure are prepared by using photolithography and chemical etching processes. The effect of different annealing time and different proportions of nitrogen-oxygen atmosphere on the VO2 thin films has been studied. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and spectrophotometer are then used to test and analyze the crystal structure, surface morphology, surface roughness, the relative content of the surface elements, and transmittance of the VO2/FTO composite films. Results show that a relatively single component VO2 thin film can be obtained under the optimum condition. The current abrupt change can be seen at the threshold voltage when the FTO/VO2/FTO structure is applied to voltage on both the transparent conductive films of the VO2 thin film. The threshold voltage is 1.7 V when the contact area is 3 mm×mm, and the threshold voltage increases as the contact area increases. When the contact area is 6 mm × 6 mm, the threshold voltage of the thin film phase transition is 4.3 V; when the contact area is 8 mm × 8 mm, the threshold voltage of the thin film phase transition is 9.3 V. Compared with the no voltage situation, the infrared transmittance difference of the FTO/VO2/FTO structure under the effect of voltage is up to 28% before and after the transition. The structure remains stable with a strong electrochromic capacity when it is applied with voltage repeatedly. This brings about many new opportunities for optoelectronic devices and industrial production.
      Corresponding author: Li Yi, optolyclp@263.net
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z348), the Foundation for Key Program of Ministry of Education China (Grant No. 207033), the Science and Technology Research Project of Shanghai Science and Technology Commission, China (Grant No. 06DZ11415) the Key Science and Technology Research Project of Shanghai Committee, China (Grant No. 10ZZ94), and the Shanghai Talent Leading Plan, China (Grant No. 2011-026).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. : Condens. Matter 12 8837

    [3]

    Lee Y W, Kim B J, Lim J W, Jin Y S 2008 Appl. Phys. Lett. 92 162903

    [4]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501

    [5]

    Driscoll T, Kim H T, Chae B G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503

    [6]

    Lee K W, Kweon J J, Lee C E, Gedanken A, Ganesan R 2010 Appl. Phys. Lett. 96 243111

    [7]

    Sugimoto N, Onoda S, Nagaosa N 2008 Phys. Rev. B 78 155104

    [8]

    Brassard D, Fourmaux S, Jacques M J, Kieffer J C, Khahani M A 2005 Appl. Phys. Lett. 87 051910

    [9]

    Ruzmetov D, Gopalakrishnan G, Deng J D, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [10]

    Chen C H, Fan Z Y 2009 Appl. Phys. Lett. 95 262106

    [11]

    He S B, Wang S F, Ding Q P, Yuan X D, Zheng W G, Xiang X, Li Z J, Zu X T 2013 Chin. Phys. B 22 058102

    [12]

    Hu Z Q, Zhang C N, Qiu P, Liu L H, Okuya M, Kaneko S 2005 J. Funct. Mater. 36 1886 (in Chinese) [胡志强, 张晨宁, 邱鹏, 刘俐宏, 奥谷昌之, 金子正治 2005 功能材料 36 1886]

    [13]

    Tong G X, Li Y, Wang F, Huang Y Z, Fang B Y, Wang X H, Zhu H Q, Liang Q, Yan M, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2013 Acta Phys. Sin. 62 208102(in Chinese) [佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞 2013 62 208102]

    [14]

    Shen N, Li Y, Yi X J 2006 J. Infra. Milli. Waves 25 199 (in Chinese) [沈楠, 李毅, 易新建 2006 红外与毫米波学报 25 199]

    [15]

    Zhang K L, Wei X Y, Wang F, Wu C Q, Zhao J S 2011 J. Optoelectronics· Laser 22 656 (in Chinese) [张楷亮, 韦晓莹, 王芳, 武长强, 赵金石 2011 光电子 · 激光 22 656]

    [16]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017102(in Chinese) [熊瑛, 文岐业, 田伟, 陈智, 杨青慧, 荆玉兰 2015 64 017102]

    [17]

    Lee J S, Ortolani M, Kouba J, Firsov A, Chang Y J, Noh T W, Schade U 2008 Infrared Phys. Technol. 51 443

    [18]

    Zhou Y, Chen X N, Ko C, Yang Z, Mouli C, Ramanthan S 2013 IEEE Electr Device L 34 202

    [19]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

    [20]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507

    [21]

    Song T T, He J, Lin L B, Chen J 2010 Acta Phys. Sin. 59 6480(in Chinese) [宋婷婷, 何捷, 林理彬, 陈军 2010 59 6480]

    [22]

    Continenza A, Massidda S, Posternak M 1999 Phys. Rev.B 60 15699

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. : Condens. Matter 12 8837

    [3]

    Lee Y W, Kim B J, Lim J W, Jin Y S 2008 Appl. Phys. Lett. 92 162903

    [4]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501

    [5]

    Driscoll T, Kim H T, Chae B G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503

    [6]

    Lee K W, Kweon J J, Lee C E, Gedanken A, Ganesan R 2010 Appl. Phys. Lett. 96 243111

    [7]

    Sugimoto N, Onoda S, Nagaosa N 2008 Phys. Rev. B 78 155104

    [8]

    Brassard D, Fourmaux S, Jacques M J, Kieffer J C, Khahani M A 2005 Appl. Phys. Lett. 87 051910

    [9]

    Ruzmetov D, Gopalakrishnan G, Deng J D, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [10]

    Chen C H, Fan Z Y 2009 Appl. Phys. Lett. 95 262106

    [11]

    He S B, Wang S F, Ding Q P, Yuan X D, Zheng W G, Xiang X, Li Z J, Zu X T 2013 Chin. Phys. B 22 058102

    [12]

    Hu Z Q, Zhang C N, Qiu P, Liu L H, Okuya M, Kaneko S 2005 J. Funct. Mater. 36 1886 (in Chinese) [胡志强, 张晨宁, 邱鹏, 刘俐宏, 奥谷昌之, 金子正治 2005 功能材料 36 1886]

    [13]

    Tong G X, Li Y, Wang F, Huang Y Z, Fang B Y, Wang X H, Zhu H Q, Liang Q, Yan M, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2013 Acta Phys. Sin. 62 208102(in Chinese) [佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞 2013 62 208102]

    [14]

    Shen N, Li Y, Yi X J 2006 J. Infra. Milli. Waves 25 199 (in Chinese) [沈楠, 李毅, 易新建 2006 红外与毫米波学报 25 199]

    [15]

    Zhang K L, Wei X Y, Wang F, Wu C Q, Zhao J S 2011 J. Optoelectronics· Laser 22 656 (in Chinese) [张楷亮, 韦晓莹, 王芳, 武长强, 赵金石 2011 光电子 · 激光 22 656]

    [16]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017102(in Chinese) [熊瑛, 文岐业, 田伟, 陈智, 杨青慧, 荆玉兰 2015 64 017102]

    [17]

    Lee J S, Ortolani M, Kouba J, Firsov A, Chang Y J, Noh T W, Schade U 2008 Infrared Phys. Technol. 51 443

    [18]

    Zhou Y, Chen X N, Ko C, Yang Z, Mouli C, Ramanthan S 2013 IEEE Electr Device L 34 202

    [19]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

    [20]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507

    [21]

    Song T T, He J, Lin L B, Chen J 2010 Acta Phys. Sin. 59 6480(in Chinese) [宋婷婷, 何捷, 林理彬, 陈军 2010 59 6480]

    [22]

    Continenza A, Massidda S, Posternak M 1999 Phys. Rev.B 60 15699

  • [1] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang. Voltage induced phase transition of polyethene glycol composite film filled with VO2 nanoparticles. Acta Physica Sinica, 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [2] Zhang Jiao, Li Yi, Liu Zhi-Min, Li Zheng-Peng, Huang Ya-Qin, Pei Jiang-Heng, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film. Acta Physica Sinica, 2017, 66(23): 238101. doi: 10.7498/aps.66.238101
    [3] Xu Ting-Ting, Li Yi, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Liu Zhi-Min, Zhang Jiao, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition. Acta Physica Sinica, 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [4] Xiong Ying, Wen Qi-Ye, Tian Wei, Mao Qi, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan. Researches on the electrical properties of vanadium oxide thin films on Si substrates. Acta Physica Sinica, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [5] Liu Xiang-Yu, Hu Hui-Yong, Zhang He-Ming, Xuan Rong-Xi, Song Jian-Jun, Shu Bin, Wang Bin, Wang Meng. Study on the strained SiGe p-channel metal-oxide-semiconductor field-effect transistor with polycrystalline silicon germanium gate threshold voltage. Acta Physica Sinica, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [6] Hu Hui-Yong, Liu Xiang-Yu, Lian Yong-Chang, Zhang He-Ming, Song Jian-Jun, Xuan Rong-Xi, Shu Bin. Study on the influence of γ -ray total dose radiation effect on the threshold voltage and transconductance of the strained Si p-channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [7] Fan Min-Min, Xu Jing-Ping, Liu Lu, Bai Yu-Rong, Huang Yong. Models on threshold voltage/subthreshold swing and structural design of high-k gate dielectric GeOI MOSFET. Acta Physica Sinica, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [8] Chen Xian-Mei, Wang Xiao-Xia, Gao Xiao-Yong, Zhao Xian-Wei, Liu Hong-Tao, Zhang Sa. Investigation on the fabrication of Ag-doped ZnO nanorods by hydrothermal method. Acta Physica Sinica, 2013, 62(5): 056104. doi: 10.7498/aps.62.056104
    [9] Xin Yan-Hui, Liu Hong-Xia, Fan Xiao-Jiao, Zhuo Qing-Qing. Threshold voltage analytical model of fully depleted strained Si single Halo silicon-on-insulator metal-oxide semiconductor field effect transistor. Acta Physica Sinica, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [10] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Su Bin, Wang Bin, Wang Guan-Yu. Physical compact modeling for threshold voltage of strained Si NMOSFET. Acta Physica Sinica, 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [11] Qiu Dong-Hong, Wen Qi-Ye, Yang Qing-Hui, Chen Zhi, Jing Yu-Lan, Zhang Huai-Wu. Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal–insulator transition characteristics of them. Acta Physica Sinica, 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [12] Li Li, Liu Hong-Xia, Yang Zhao-Nian. Threshold-voltage and hole-sheet-density model of quantum well Si/SiGe/Si p field effect transistor. Acta Physica Sinica, 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [13] Li Yu-Chen, Zhang He-Ming, Zhang Yu-Ming, Hu Hui-Yong, Xu Xiao-Bo, Qin Shan-Shan, Wang Guan-Yu. A analytic model for the threshold-voltage of novel high-speed semiconductor device IMOS. Acta Physica Sinica, 2012, 61(4): 047303. doi: 10.7498/aps.61.047303
    [14] Wang Guan-Yu, Zhang He-Ming, Wang Xiao-Yan, Wu Tie-Feng, Wang Bin. Two-dimensional threshold voltage model of sub-100 nm strained-Si/SiGe nMOSFET. Acta Physica Sinica, 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [15] Qu Jiang-Tao, Zhang He-Ming, Wang Guan-Yu, Wang Xiao-Yan, Hu Hui-Yong. Threshold voltage model for quantum-well channelpMOSFET with poly SiGe gate. Acta Physica Sinica, 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [16] Tang Xiao-Yan, Zhang Yi-Men, Zhang Yu-Ming. The threshold voltage of SiC Schottky barrier source/drain MOSFET. Acta Physica Sinica, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [17] Zhang Zhi-Feng, Zhang He-Ming, Hu Hui-Yong, Xuan Rong-Xi, Song Jian-Jun. Threshold voltage model of strained Si channel nMOSFET. Acta Physica Sinica, 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [18] Zhang He-Ming, Cui Xiao-Ying, Hu Hui-Yong, Dai Xian-Ying, Xuan Rong-Xi. Study on threshold voltage model of strained SiGe quantum well channel SOI PMOSFET. Acta Physica Sinica, 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [19] Li Yan-Ping, Xu Jing-Ping, Chen Wei-Bing, Xu Sheng-Guo, Ji Feng. 2-D threshold voltage model for short-channel MOSFET with quantum-mechanical effects. Acta Physica Sinica, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [20] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E. An analytical model of MOSFET threshold voltage with considiring the quantum effects. Acta Physica Sinica, 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
Metrics
  • Abstract views:  6257
  • PDF Downloads:  252
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2015
  • Accepted Date:  19 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map