Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The -type four-particle entangled state generated by using superconducting artificial atoms with broken symmetry

Leng Chun-Ling Zhang Ying-Qiao Ji Xin

Citation:

The -type four-particle entangled state generated by using superconducting artificial atoms with broken symmetry

Leng Chun-Ling, Zhang Ying-Qiao, Ji Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We propose a scheme for generating a genuine -type four-particle entangled state of superconducting artificial atoms with broken symmetry by using one-dimensional transmission line resonator as a data bus. With the help of the Circuit quantum electrodynamics system composed of -type three-level artificial atoms and transmission line resonator, our scheme also has long coherence time and storage time. Meanwhile, the -type three-level artificial atom used in the scheme is different from natural atom and has cyclic transitions. Furthermore, our scheme is easy to control and flexible. Through a suitable choice of the Rabi frequencies and detunings of the classical fields, we can use this system to implement the selective coupling between two arbitrary qubits. After suitable interaction time and simple operations, the desired entangled state can be obtained. Since artificial atomic excited states and photonic states are adiabatically eliminated, our scheme is robust against the spontaneous emissions of artificial atoms and the decays of transmission line resonator. We also analyze the performance and the experimental feasibility of the scheme, and show that our scheme is feasible under existing experimental conditions.
      Corresponding author: Ji Xin, jixin@ybu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11464046), the National Natural Science Foundation of China-the Special Fund of Theoretical Physics (Grant No. 11347122) and the Science and Technology Development Foundation of Jilin Province for Youths, China (Grant No. 20130522148JH).
    [1]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [2]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [3]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656

    [4]

    Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392

    [5]

    Vidal G 2003 Phys. Rev. Lett. 91 147902

    [6]

    Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhong H Y 2007 Chin. Phys. 16 2149

    [7]

    Zheng S B 2001 Phys. Rev. Lett. 87 230404

    [8]

    Guo G C, Zhang Y S 2002 Phys. Rev. A 65 054302

    [9]

    Bertet P, Osnaghi S, Milman P, Auffeves A, Maioli P, Brune M, Raimond J M, Haroche S 2002 Phys. Rev. Lett. 88 143601

    [10]

    Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R, Wineland D J 2005 Nature 438 639

    [11]

    Cho J, Lee H W 2005 Phys. Rev. Lett. 95 160501

    [12]

    Zou X B, Shu J, Guo G C 2006 Phys. Rev. A 73 054301

    [13]

    Hume D B, Chou C W, Rosenband T, Wineland D J 2009 Phys. Rev. A 80 052302

    [14]

    Shao X Q, Chen L, Zhang S, Zhao Y F, Yeon K H 2010 Europhys. Lett. 90 50003

    [15]

    Yu H Y, Luo Y, Yao W 2011 Phys. Rev. A 84 032337

    [16]

    Chen X Y, Yu P, Jiang L Z, Tian M Z 2013 Phys. Rev. A 87 012322

    [17]

    Greenberger D M, Horne M A, Zeilinger A 1989 Bell's Theorem, Quantum Theory and Conceptions of the Universe (Netherlands: Springer) 37 69

    [18]

    Dr W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314

    [19]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [20]

    Yeo Y, Chua W K 2006 Phys. Rev. Lett. 96 060502

    [21]

    Wu C F, Yeo Y, Kwek L C, Oh C H 2007 Phys. Rev. A 75 032332

    [22]

    Lin S, Wen Q Y, Gao F, Zhu F C 2008 Phys. Rev. A 78 064304

    [23]

    Tokunaga Y, Yamamoto T, Koashi M, Nobuyuki L 2005 Phys. Rev. A 71 030301

    [24]

    Wang H F, Zhang S 2009 Phys. Rev. A 79 042336

    [25]

    Shen H W, Wang H F, Ji X, Zhang S 2009 Chin. Phys. B 18 3706

    [26]

    Wang X W, Yang G J 2008 Phys. Rev. A 78 024301

    [27]

    Shi Y L, Mei F, Yu Y F, Feng X L, Zhang Z M 2012 Quant. Info. Proc. 11 229

    [28]

    Zhang Y J, Xia Y J, Man Z X, Guo G C 2009 Sci. China Series G: Phys. Mech. Astron. 52 700

    [29]

    Gao G L, Song F Q, Huang S S, Wang H, Yuan X Z, Wang M F, Jiang N Q 2012 Chin. Phys. B 21 44209

    [30]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [31]

    You J Q, Nori F 2011 Nature 474 589

    [32]

    DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2010 Nature 467 574

    [33]

    Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502

    [34]

    Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2006 Phys. Rev. A 74 042318

    [35]

    Zhong Y P, Li C Y, Wang H H, Chen Y 2013 Chin. Phys. B 22 110313

    [36]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [37]

    DiCarlo L, Chow J M, Gambetta J M, Bishop Lev S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240

    [38]

    Liu Y X, You J Q, Wei L F, Sun C P, Nori F 2005 Phys. Rev. Lett. 95 087001

    [39]

    Sun C P, Liu Y X, Wei L F, Nori F 2005 arXiv: quant-ph/050611

    [40]

    Liu Y X, Sun C P, Nori F 2006 Phys. Rev. A 74 052321

    [41]

    Leek P J, Baur M, Fink J M, Bianchetti R, Steffen L, Filipp S, Wallraff A 2010 Phys. Rev. Lett. 104 100504

  • [1]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [2]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [3]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656

    [4]

    Zheng S B, Guo G C 2000 Phys. Rev. Lett. 85 2392

    [5]

    Vidal G 2003 Phys. Rev. Lett. 91 147902

    [6]

    Li X H, Li C Y, Deng F G, Zhou P, Liang Y J, Zhong H Y 2007 Chin. Phys. 16 2149

    [7]

    Zheng S B 2001 Phys. Rev. Lett. 87 230404

    [8]

    Guo G C, Zhang Y S 2002 Phys. Rev. A 65 054302

    [9]

    Bertet P, Osnaghi S, Milman P, Auffeves A, Maioli P, Brune M, Raimond J M, Haroche S 2002 Phys. Rev. Lett. 88 143601

    [10]

    Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R, Wineland D J 2005 Nature 438 639

    [11]

    Cho J, Lee H W 2005 Phys. Rev. Lett. 95 160501

    [12]

    Zou X B, Shu J, Guo G C 2006 Phys. Rev. A 73 054301

    [13]

    Hume D B, Chou C W, Rosenband T, Wineland D J 2009 Phys. Rev. A 80 052302

    [14]

    Shao X Q, Chen L, Zhang S, Zhao Y F, Yeon K H 2010 Europhys. Lett. 90 50003

    [15]

    Yu H Y, Luo Y, Yao W 2011 Phys. Rev. A 84 032337

    [16]

    Chen X Y, Yu P, Jiang L Z, Tian M Z 2013 Phys. Rev. A 87 012322

    [17]

    Greenberger D M, Horne M A, Zeilinger A 1989 Bell's Theorem, Quantum Theory and Conceptions of the Universe (Netherlands: Springer) 37 69

    [18]

    Dr W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314

    [19]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [20]

    Yeo Y, Chua W K 2006 Phys. Rev. Lett. 96 060502

    [21]

    Wu C F, Yeo Y, Kwek L C, Oh C H 2007 Phys. Rev. A 75 032332

    [22]

    Lin S, Wen Q Y, Gao F, Zhu F C 2008 Phys. Rev. A 78 064304

    [23]

    Tokunaga Y, Yamamoto T, Koashi M, Nobuyuki L 2005 Phys. Rev. A 71 030301

    [24]

    Wang H F, Zhang S 2009 Phys. Rev. A 79 042336

    [25]

    Shen H W, Wang H F, Ji X, Zhang S 2009 Chin. Phys. B 18 3706

    [26]

    Wang X W, Yang G J 2008 Phys. Rev. A 78 024301

    [27]

    Shi Y L, Mei F, Yu Y F, Feng X L, Zhang Z M 2012 Quant. Info. Proc. 11 229

    [28]

    Zhang Y J, Xia Y J, Man Z X, Guo G C 2009 Sci. China Series G: Phys. Mech. Astron. 52 700

    [29]

    Gao G L, Song F Q, Huang S S, Wang H, Yuan X Z, Wang M F, Jiang N Q 2012 Chin. Phys. B 21 44209

    [30]

    Makhlin Y, Schön G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [31]

    You J Q, Nori F 2011 Nature 474 589

    [32]

    DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2010 Nature 467 574

    [33]

    Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502

    [34]

    Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2006 Phys. Rev. A 74 042318

    [35]

    Zhong Y P, Li C Y, Wang H H, Chen Y 2013 Chin. Phys. B 22 110313

    [36]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [37]

    DiCarlo L, Chow J M, Gambetta J M, Bishop Lev S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240

    [38]

    Liu Y X, You J Q, Wei L F, Sun C P, Nori F 2005 Phys. Rev. Lett. 95 087001

    [39]

    Sun C P, Liu Y X, Wei L F, Nori F 2005 arXiv: quant-ph/050611

    [40]

    Liu Y X, Sun C P, Nori F 2006 Phys. Rev. A 74 052321

    [41]

    Leek P J, Baur M, Fink J M, Bianchetti R, Steffen L, Filipp S, Wallraff A 2010 Phys. Rev. Lett. 104 100504

  • [1] Jiang Cui, Li Jia-Rui, Qi Di, Zhang Lian-Lian. Effect of imaginary potential energy with parity-time symmetry on band structures and edge states of T-graphene. Acta Physica Sinica, 2024, 73(20): 207301. doi: 10.7498/aps.73.20240871
    [2] Yang Shuo-Ying, Yin Jia-Xin. Transport phenomena in time-reversal symmetry-breaking Kagome superconductors. Acta Physica Sinica, 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [3] Cai Jian-Le, Shi Sheng-Shui. Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type. Acta Physica Sinica, 2012, 61(3): 030201. doi: 10.7498/aps.61.030201
    [4] Chen Rong, Xu Xue-Jun. Conformal invariance, Noether symmetry and Lie symmetry for systems with unilateral Chetaev non-holonomic constraints. Acta Physica Sinica, 2012, 61(14): 141101. doi: 10.7498/aps.61.141101
    [5] Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass. Acta Physica Sinica, 2011, 60(11): 111101. doi: 10.7498/aps.60.111101
    [6] Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li. Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941. doi: 10.7498/aps.59.2939
    [7] Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai. Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica, 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [8] Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming. Unified symmetry of mechanico-electrical systems with nonholonomic constraints of non-Chetaev’s type. Acta Physica Sinica, 2009, 58(10): 6732-6736. doi: 10.7498/aps.58.6732
    [9] Zhang Yi, Ge Wei-Kuan. Lagrange symmetries and conserved quantities for nonholonomic systems of non-Chetaev’s type. Acta Physica Sinica, 2009, 58(11): 7447-7451. doi: 10.7498/aps.58.7447
    [10] Hu Chu-Le. Lie symmetries and Hojman conserved quantities of one kind of differential equations of motion of nonholonomic systems. Acta Physica Sinica, 2007, 56(7): 3675-3677. doi: 10.7498/aps.56.3675
    [11] Jing Hong-Xing, Li Yuan-Cheng, Xia Li-Li. Perturbation of Lie symmetries and a type of generalized Hojman adiabatic invariants for variable mass systems with unilateral holonomic constraints. Acta Physica Sinica, 2007, 56(6): 3043-3049. doi: 10.7498/aps.56.3043
    [12] Zhang Yi. Perturbation of symmetries and Hojman adiabatic invariants of discrete mechanical systems in the phase space. Acta Physica Sinica, 2007, 56(4): 1855-1859. doi: 10.7498/aps.56.1855
    [13] Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica, 2007, 56(10): 5575-5579. doi: 10.7498/aps.56.5575
    [14] Zhang Yi, Fan Cun-Xin, Mei Feng-Xiang. Perturbation of symmetries and Hojman adiabatic invariants for Lagrangian system. Acta Physica Sinica, 2006, 55(7): 3237-3240. doi: 10.7498/aps.55.3237
    [15] Zhou Qing-Chun, Zhu Shi-Ning. Entanglement of a Λ-type three-level atom with a single-mode field initially in the number state. Acta Physica Sinica, 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [16] Dai Hong-Yi, Chen Ping-Xing, Liang Lin-Mei, Li Cheng-Zu. Teleporting superpositions of even and odd coherent states of a cavity field via the entangled state of a degenerate Λ-type atom interacting with the cavity field. Acta Physica Sinica, 2004, 53(2): 441-444. doi: 10.7498/aps.53.441
    [17] QIAN XIAN-MIN, LOU SEN-YUE. SYMMETRIES OF THE(2 +1) DIMENSIONAL DISCRETE Toda EQUATION. Acta Physica Sinica, 1996, 45(5): 721-728. doi: 10.7498/aps.45.721
    [18] SUN JIU-XUN, ZHANG LI-YUAN. A COMBINATION MODEL OF SUPERCONDUCTIVITY UNDER s+d MIXED WAVE SYMMETRY. Acta Physica Sinica, 1996, 45(11): 1913-1920. doi: 10.7498/aps.45.1913
    [19] ZHANG ZONG-YE, LI GUANG-LIE. SYMMETRY CLASSIFICATION FOR EXCITED STATES OF HYPERNUCLEI. Acta Physica Sinica, 1977, 26(6): 467-476. doi: 10.7498/aps.26.467
    [20] ZHANG ZONG-YE, LI GUANG-LIE. THE SYMMETRY CLASSIFICATION FOR THE EXCITED STATES OF HYPERNUCLEI. Acta Physica Sinica, 1976, 25(2): 172-174. doi: 10.7498/aps.25.172
Metrics
  • Abstract views:  5224
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2015
  • Accepted Date:  08 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map