Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method

Sun Peng-Nan Li Yun-Bo Ming Fu-Ren

Citation:

Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method

Sun Peng-Nan, Li Yun-Bo, Ming Fu-Ren
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the principle of virtual works, a multiphase smoothed particle hydrodynamics (SPH) model is further developed from the foundation of Hu X Y et al. (2006) and Grenier N et al. (2009). In the present model, the surface tension force implementation suitable for the multiphase flows with a large density ratio is applied, and this allows a good continuity at the multiphase interface. Artificial displacement correction is applied to keep the particles distributing uniformly in the whole flow field, and therefore any artificial viscous term is never needed; this is very important in the numerical simulation of viscous flows since the introduction of artificial viscosity changes the Reynolds number. Background pressure and interface sharpness force are added in the equation of state and the equation of momentum respectively to ensure the multiphase interface stability and smoothness; this is essential in the simulation of multiphase flows with large density difference at the multiphase interface. Two types of viscosity expressions suitable for multiphase flows are introduced and analyzed; the conclusion is that the formula proposed by Morris et al. (1997) and its similarly derived forms can give more accurate results. In the numerical validations, an oscillating droplet test is applied first to confirm the accuracy of the surface tension model and good results are achieved. This demonstrates that the artificial displacement and the interface sharp force will make negligible effects to the surface tension implementation. After that, two classic quantitative benchmarks of rising bubbles are simulated and the results of SPH agree well with the reference data. Moreover, in the two numerical benchmarks, the effect of the artificial displacement, the choice of the viscosity expression, and the type of the kernel function are compared and finally an optimal combination of these numerical aspects is recommended. Based on the above numerical investigations, the splitting process of an initially circular bubble is simulated and the numerical results agree well with the experimental data. In the last numerical case, the process of chasing and merging between two rising bubbles in vertical direction is simulated, based on which the mechanisms of these interesting interactions between two rising bubbles are analyzed. It is demonstrated in the present work that further improved multiphase SPH model may provide a potential method for the research of bubble dynamics.
      Corresponding author: Ming Fu-Ren, mingfuren@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51479041, 51179036).
    [1]

    Shew W L, Pinton J F 2006 J. Stat. Mech. -Theory E 2006 01

    [2]

    Zhang A M, Cui P, Cui J, Wang Q X 2015 J. Fluid Mech. 776 137

    [3]

    Zhang A M, Sun P, Ming F 2015 Comput. Method Appl. M. 294 189

    [4]

    Zhang A M, Li S, Cui J 2015 Phys. Fluids 27 062102

    [5]

    Yu Z, Yang H, Fan L S 2011 Chem. Eng. Sci. 66 3441

    [6]

    Hua J S, Stene J F, Lin P 2008 J. Comput. Phys. 227 3358

    [7]

    Wang H, Zhang Z Y, Yang Y M, Zhang H S 2010 Chinese Phys. B 19 026801

    [8]

    Annaland M, Deen N G, Kuipers J A M 2005 Chem. Eng. Sci. 60 2999

    [9]

    Croce R, Griebel M, Schweitzer M A 2010 Int. J. Numer. Meth. Fl. 62 963

    [10]

    Mahdi D, Mohammad T R, Hamidreza M 2015 Chinese Phys. B 24 024303

    [11]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. 37 1179

    [12]

    Zhang A M, Liu Y L 2015 J. Comput. Phys. 294 208

    [13]

    Zhang A M, Wang S P, Huang C, Wang B 2013 Eur. J. Mech. B-Fluid 42 69

    [14]

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701 (in Chinese) [李帅, 孙龙泉, 张阿漫 2014 63 184701]

    [15]

    Colagrossi A, Landrini M 2003 J. Comput. Phy. 191 448

    [16]

    Chen Z, Zong Z, Li H T, Li J 2013 Ocean Eng. 59 129

    [17]

    Sun P, Ming F, Zhang A 2015 Ocean Eng. 98 32

    [18]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific)

    [19]

    Hu X Y, Adams N A 2006 J. Comput. Phys. 213 844

    [20]

    Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B 2009 J. Comput. Phys. 228 8380

    [21]

    Sun P, Ming F, Zhang A, Yao X 2014 Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering San Francisco June 8-14 2014

    [22]

    Szewc K, Pozorski J, Minier J P 2013 Int. J. Multiphas. Flow 50 98

    [23]

    Ji B, Luo X W, Wu Y L, Peng X X, Duan Y L 2013 Int. J. Multiphas. Flow 51 33

    [24]

    Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G 2013 Ocean Eng. 69 88

    [25]

    Zainali A, Tofighi N, Shadloo M S, Yildiz M 2013 Comput. Method Appl. M. 254 99

    [26]

    Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L 2009 Int. J. Numer. Meth. Fl. 60 1259

    [27]

    Colagrossi A, Antuono M, Souto-Iglesias A, Le Touzé D 2011 Phys. Rev. E 84 026705

    [28]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335

    [29]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [30]

    Colagrossi A, Bouscasse B, Antuono M, Marrone S 2012 Comput. Phys. Commun. 183 1641

    [31]

    Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G 2013 J. Comput. Phys. 245 456

    [32]

    Chen Z, Zong Z, Liu M B, Zou L, Li H T, Shu C 2015 J. Comput. Phys. 283 169

    [33]

    Yang X F, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese) [杨秀峰, 刘谋斌 2012 61 224701]

    [34]

    Jin H B, Ding X 2005 J. Comput. Phys. 202 699

    [35]

    Molteni D, Colagrossi A 2009 Comput. Phys. Commun. 180 861

    [36]

    Shepard D 1968 Proceedings of the 23rd ACM national conference: ACM 517

    [37]

    Monaghan J, Gingold R 1983 J. Comput. Phys. 52 374

    [38]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [39]

    Adami S, Hu X Y, Adams N A 2010 J. Comput. Phys. 229 5011

    [40]

    Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G 2013 Ocean Eng. 69 88

    [41]

    Zhang A M, Cao X Y, Ming F R, Zhang Z F 2013 Appl. Ocean Res. 42 24

    [42]

    Chen R, Tian W, Su G, Qiu S, Ishiwatari Y, Oka Y 2011 Chem. Eng. Sci. 66 5055

    [43]

    Marrone S 2012 Ph. D. Dissertation (Rome: University Of Rome)

  • [1]

    Shew W L, Pinton J F 2006 J. Stat. Mech. -Theory E 2006 01

    [2]

    Zhang A M, Cui P, Cui J, Wang Q X 2015 J. Fluid Mech. 776 137

    [3]

    Zhang A M, Sun P, Ming F 2015 Comput. Method Appl. M. 294 189

    [4]

    Zhang A M, Li S, Cui J 2015 Phys. Fluids 27 062102

    [5]

    Yu Z, Yang H, Fan L S 2011 Chem. Eng. Sci. 66 3441

    [6]

    Hua J S, Stene J F, Lin P 2008 J. Comput. Phys. 227 3358

    [7]

    Wang H, Zhang Z Y, Yang Y M, Zhang H S 2010 Chinese Phys. B 19 026801

    [8]

    Annaland M, Deen N G, Kuipers J A M 2005 Chem. Eng. Sci. 60 2999

    [9]

    Croce R, Griebel M, Schweitzer M A 2010 Int. J. Numer. Meth. Fl. 62 963

    [10]

    Mahdi D, Mohammad T R, Hamidreza M 2015 Chinese Phys. B 24 024303

    [11]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. 37 1179

    [12]

    Zhang A M, Liu Y L 2015 J. Comput. Phys. 294 208

    [13]

    Zhang A M, Wang S P, Huang C, Wang B 2013 Eur. J. Mech. B-Fluid 42 69

    [14]

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701 (in Chinese) [李帅, 孙龙泉, 张阿漫 2014 63 184701]

    [15]

    Colagrossi A, Landrini M 2003 J. Comput. Phy. 191 448

    [16]

    Chen Z, Zong Z, Li H T, Li J 2013 Ocean Eng. 59 129

    [17]

    Sun P, Ming F, Zhang A 2015 Ocean Eng. 98 32

    [18]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific)

    [19]

    Hu X Y, Adams N A 2006 J. Comput. Phys. 213 844

    [20]

    Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B 2009 J. Comput. Phys. 228 8380

    [21]

    Sun P, Ming F, Zhang A, Yao X 2014 Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering San Francisco June 8-14 2014

    [22]

    Szewc K, Pozorski J, Minier J P 2013 Int. J. Multiphas. Flow 50 98

    [23]

    Ji B, Luo X W, Wu Y L, Peng X X, Duan Y L 2013 Int. J. Multiphas. Flow 51 33

    [24]

    Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G 2013 Ocean Eng. 69 88

    [25]

    Zainali A, Tofighi N, Shadloo M S, Yildiz M 2013 Comput. Method Appl. M. 254 99

    [26]

    Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L 2009 Int. J. Numer. Meth. Fl. 60 1259

    [27]

    Colagrossi A, Antuono M, Souto-Iglesias A, Le Touzé D 2011 Phys. Rev. E 84 026705

    [28]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335

    [29]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [30]

    Colagrossi A, Bouscasse B, Antuono M, Marrone S 2012 Comput. Phys. Commun. 183 1641

    [31]

    Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G 2013 J. Comput. Phys. 245 456

    [32]

    Chen Z, Zong Z, Liu M B, Zou L, Li H T, Shu C 2015 J. Comput. Phys. 283 169

    [33]

    Yang X F, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese) [杨秀峰, 刘谋斌 2012 61 224701]

    [34]

    Jin H B, Ding X 2005 J. Comput. Phys. 202 699

    [35]

    Molteni D, Colagrossi A 2009 Comput. Phys. Commun. 180 861

    [36]

    Shepard D 1968 Proceedings of the 23rd ACM national conference: ACM 517

    [37]

    Monaghan J, Gingold R 1983 J. Comput. Phys. 52 374

    [38]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [39]

    Adami S, Hu X Y, Adams N A 2010 J. Comput. Phys. 229 5011

    [40]

    Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G 2013 Ocean Eng. 69 88

    [41]

    Zhang A M, Cao X Y, Ming F R, Zhang Z F 2013 Appl. Ocean Res. 42 24

    [42]

    Chen R, Tian W, Su G, Qiu S, Ishiwatari Y, Oka Y 2011 Chem. Eng. Sci. 66 5055

    [43]

    Marrone S 2012 Ph. D. Dissertation (Rome: University Of Rome)

  • [1] Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian. Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets. Acta Physica Sinica, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [2] Zhou Hao, Li Yi, Liu Hai, Chen Hong, Ren Lei-Sheng. Optimized transportation meshfree method and its apllication in simulating droplet surface tension effect. Acta Physica Sinica, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [3] Shen Wan-Ping, You Shi-Jia, Mao Hong. Phase structure and surface tension in quark meson model. Acta Physica Sinica, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [4] Yang Xiu-Feng, Liu Mou-Bin. Numerical study of Rayleigh-Taylor instability by using smoothed particle hydrodynamics. Acta Physica Sinica, 2017, 66(16): 164701. doi: 10.7498/aps.66.164701
    [5] Ai Xu-Peng, Ni Bao-Yu. Influence of viscosity and surface tension of fluid on the motion of bubbles. Acta Physica Sinica, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [6] Bai Ling, Li Da-Ming, Li Yan-Qing, Wang Zhi-Chao, Li Yang-Yang. Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension model. Acta Physica Sinica, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [7] Ma Li-Qiang, Su Tie-Xiong, Liu Han-Tao, Meng-Qing. Numerical simulation on oscillation of micro-drops by means of smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [8] Li Shuai, Sun Long-Quan, Zhang A-Man. Dynamic behavior of rising bubble. Acta Physica Sinica, 2014, 63(18): 184701. doi: 10.7498/aps.63.184701
    [9] Lei Juan-Mian, Huang Can. An improved pre-processing method for somooth particle hydrodynamics. Acta Physica Sinica, 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [10] Li Yuan, Luo Xi-Sheng. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability. Acta Physica Sinica, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [11] Song Bao-Wei, Ren Feng, Hu Hai-Bao, Guo Yun-He. Drag reduction on micro-structured hydrophobic surfaces due to surface tension effect. Acta Physica Sinica, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [12] Su Tie-Xiong, Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [13] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [14] Liu Han-Tao, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong. Dissipative particle dynamics simulation of multiphase flow through a mesoscopic channel. Acta Physica Sinica, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [15] Qiang Hong-Fu, Shi Chao, Chen Fu-Zhen, Han Ya-Wei. Simulation of two-dimensional droplet collisions based on SPH method of multi-phase flows with large density differences. Acta Physica Sinica, 2013, 62(21): 214701. doi: 10.7498/aps.62.214701
    [16] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [17] Qiang Hong-Fu, Liu Kai, Chen Fu-Zhen. Numerical implementation of deformation and motion of droplet at the interface between vapor and solid surface with smoothed particle hydrodynamics methodology. Acta Physica Sinica, 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [18] Jiang Tao, Ouyang Jie, Zhao Xiao-Kai, Ren Jin-Lian. The deformation process of viscous liquid drop studied by using kernel gradient corrected SPH method. Acta Physica Sinica, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [19] Chang Jian-Zhong, Liu Mou-Bin, Liu Han-Tao. Simulation of multiphase micro-drop dynamics using dissipative particle dynamics. Acta Physica Sinica, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
    [20] Zhang La-Bao, Dai Fu-Ping, Xiong Yu-Ying, Wei Bing-Bo. Surface tension of a highly supercooled Ni-15%Sn alloy melt. Acta Physica Sinica, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
Metrics
  • Abstract views:  6652
  • PDF Downloads:  374
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2014
  • Accepted Date:  30 March 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map