Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical studies of electrostatic Stark deceleration for subsonic NH3 molecular beams

Liu Jian-Ping Hou Shun-Yong Wei Bin Yin Jian-Ping

Citation:

Theoretical studies of electrostatic Stark deceleration for subsonic NH3 molecular beams

Liu Jian-Ping, Hou Shun-Yong, Wei Bin, Yin Jian-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we investigate theoretically the Stark deceleration and cooling of subsonic NH3 molecular beams based on our second-generation electrostatic Stark decelerator with 180 stages. Firstly, we calculate the Stark shifts of NH3 molecules in the |J=1, K=1 ightangle states and show the stable area of longitudinal phase space for different synchronous phase angles. Secondly, we study the slowing performance of NH3 molecular beams in the traditional mode, and discuss the relationships between various parameters (such as the kinetic energy loss per stage, final velocity and the slowing efficiency) and the synchronous phase angle 0, as well as the dependence of final velocity on the applied voltages. It is found that a subsonic NH3 molecular beam can be decelerated from 280 to 6.7 m/s at 0=26.08 when the high voltages applied on the electrodes are 13 kV, corresponding to a removal of 99.9% kinetic energy. The translational temperature of the molecular packets in the moving frame is significantly reduced from 1.34 K to 80 mK. Finally, we study the slowing performance of NH3 molecules and the dependence of final velocity on the synchronous phase angle in an alternate operation mode. In this mode, a synchronous phase angle 0=0 is chosen to bunch the molecules by using the first 15 stages. The remaining 165 stages are then used to slow a subsonic molecular beam at a certain synchronous phase angle. Our result shows that a molecular beam with a mean velocity of 280 m/s can be decelerated to 20.7 m/s at 0=65.4 when the voltages applied are 6.5 kV, indicating a 99.4% kinetic energy removal, and the translational temperature of the molecular packets can be reduced from 1.34 K to 1.6 mK. By comparing the results obtained from the two operational modes, the temperature of the slowed molecular packet in the alternate mode is 50 times lower than that in the traditional mode. It is shown that our second-generation 180-stage Stark decelerator can effectively produce slow and cold molecules with relatively small electric dipole moment like NH3. These monochromatic NH3 molecular beams offer a promising starting point for high resolution spectroscopy, precision measurement, cold collisions and cold chemistry. This theoretical work provides a reliable basis in our further experimental research.
      Corresponding author: Yin Jian-Ping, jpyin@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674047, 10804031, 10904037, 10974055, 11034002, 11274114), the National Basic Research Program of China (Grant Nos. 2006CB921604, 2011CB921602), the Basic Key Program of Shanghai Municipality, China (Grant No. 07JC14017), and the Shanghai Leading Academic Discipline Project, China (Grant No. B408).
    [1]

    Doyle J M, Friedrich B 1999 Nature 401 749

    [2]

    Williams C J, Julienne P S 2000 Science 287 986

    [3]

    Santos L, Shlyapnikov G V, Zoller P, Lewenstein M 2000 Phys. Rev. Lett. 85 1791

    [4]

    Baranov M A, Mar'enko M S, Rychkov V S, Shlyapnikov G V 2002 Phys. Rev. A 66 013606

    [5]

    van Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A, Meijer G 2004 Eur. Phys. J. D 31 337

    [6]

    Hudson E R, Lewandowski H J, Sawyer B C, Ye J 2006 Phys. Rev. Lett. 96 143004

    [7]

    Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A 2011 Nature 473 493

    [8]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [9]

    Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853

    [10]

    Gilijamse J J, Hoekstra S, van de Meerakker S Y T, Groenenboom G C, Meijer G 2006 Science 313 1617

    [11]

    Weinstein J D, deCarvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [12]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558

    [13]

    Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U, Raizen M G 2008 Phys. Rev. A 77 051401

    [14]

    Fulton R, Bishop A I, Barker P F 2004 Phys. Rev. Lett. 93 243004

    [15]

    Yin Y L, Xia Y, Yin J P 2006 Chin. Phys. Lett. 23 02737

    [16]

    Xia Y, Yin Y L, Ji X, Yin J P 2012 Chin. Phys. Lett. 29 053701

    [17]

    Yin Y L, Xia Y, Yin J P 2008 Chin. Phys. B 17 03672

    [18]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820

    [19]

    Miller J D, Cline R A, Heinzen D J 1993 Phys. Rev. Lett. 71 2204

    [20]

    Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J, Grimm R 2003 Science 302 2101

    [21]

    van de Meerakker S Y T, Labazan I, Hoekstra S, Küpper J, Meijer G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S1077

    [22]

    Bochinski J R, Hudson E R, Lewandowski H J, Meijer G, Ye J 2003 Phys. Rev. Lett. 91 243001

    [23]

    Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G, Hinds E A 2004 Phys. Rev. Lett. 92 173002

    [24]

    Jung S, Tiemann E, Lisdat C 2006 Phys. Rev. A 74 040701

    [25]

    Wall T E, Kanem J F, Dyne J M, Hudson J J, Sauer B E, Hinds E A, Tarbutt M R 2011 Phys. Chem. Chem. Phys. 13 18991

    [26]

    Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L, Ye J 2006 Phys. Rev. A 73 063404

    [27]

    Belthem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A, Meijer G 2000 Nature 406 491

    [28]

    van de Meerakker S Y T, Smeets P H M, Vanhaecke N, Jongma R T, Meijer G 2005 Phys. Rev. Lett. 94 023004

    [29]

    Hoekstra S, Metsälä M, Zieger P C, Scharfenberg L, Gilijamse J J, Meijer G, van de Meerakker S Y T 2007 Phys. Rev. A 76 063408

    [30]

    Wang Q, Li S Q, Hou S Y, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 013701

    [31]

    Li S Q, Xu L, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 123701

    [32]

    Wang Z X, Gu Z X, Deng L Z, Yin J P 2015 Chin. Phys. B 24 053701

    [33]

    Gilijamse J J, Hoekstra S, van de Meerakker S Y T, Groenenboom G C, Meijer G 2006 Science 313 1617

    [34]

    Kirste M, Wang X G, Schewe H C, Meijer G, Liu K, van der Avoird A, Janssen L M C, Gubbels K B, Groenenboom G C, van de Meerakker S Y T 2012 Science 338 1060

    [35]

    von Zastrow A, Onvlee J, Vogels S N, Groenenboom G C, van der Avoird A, T van de Meerakker S Y 2014 Nature Chemistry 6 216

    [36]

    Tkáč O, Saha A K, Onvlee J, Chung-Hsin Yang, Sarma G, Bishwakarma C K, van de Meerakker S Y T, van der Avoird A, Parker D H, Orr-Ewing A J 2014 Phys. Chem. Chem. Phys. 16 477

    [37]

    Crompvoets F M H, Jongma R T, Bethlem H L, van Roij A J A, Meijer G 2002 Phys. Rev. Lett. 89 093004

    [38]

    Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

    [39]

    Quintero-Pérez M, Jansen P, Wall T E, van den Berg J E, Hoekstra S, Bethlem H L 2013 Phys. Rev. Lett. 110 133003

    [40]

    Fu G B, Deng L Z, Yin J P 2008 Chin. Phys. Lett. 25 923

    [41]

    Deng L Z, Fu G B, Yin J P 2009 Chin. Phys. B18 0149

    [42]

    Deng L Z 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [邓联忠 2008 博士学位论文(上海: 华东师范大学)]

    [43]

    Hou S Y, Li S Q, Deng L Z, Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301

    [44]

    Hou S Y 2013 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [侯顺永 2013 博士学位论文(上海: 华东师范大学)]

    [45]

    Gordy W, Cook R 1970 Microwave molecular spectra (New York: John Wiley & Sons Inc) p187-188

    [46]

    van de Meerakker S Y T, Vanhaecke N, Meijer G 2006 Annu. Rev. Phys. Chem. 57 159

  • [1]

    Doyle J M, Friedrich B 1999 Nature 401 749

    [2]

    Williams C J, Julienne P S 2000 Science 287 986

    [3]

    Santos L, Shlyapnikov G V, Zoller P, Lewenstein M 2000 Phys. Rev. Lett. 85 1791

    [4]

    Baranov M A, Mar'enko M S, Rychkov V S, Shlyapnikov G V 2002 Phys. Rev. A 66 013606

    [5]

    van Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A, Meijer G 2004 Eur. Phys. J. D 31 337

    [6]

    Hudson E R, Lewandowski H J, Sawyer B C, Ye J 2006 Phys. Rev. Lett. 96 143004

    [7]

    Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E A 2011 Nature 473 493

    [8]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [9]

    Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853

    [10]

    Gilijamse J J, Hoekstra S, van de Meerakker S Y T, Groenenboom G C, Meijer G 2006 Science 313 1617

    [11]

    Weinstein J D, deCarvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [12]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558

    [13]

    Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U, Raizen M G 2008 Phys. Rev. A 77 051401

    [14]

    Fulton R, Bishop A I, Barker P F 2004 Phys. Rev. Lett. 93 243004

    [15]

    Yin Y L, Xia Y, Yin J P 2006 Chin. Phys. Lett. 23 02737

    [16]

    Xia Y, Yin Y L, Ji X, Yin J P 2012 Chin. Phys. Lett. 29 053701

    [17]

    Yin Y L, Xia Y, Yin J P 2008 Chin. Phys. B 17 03672

    [18]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820

    [19]

    Miller J D, Cline R A, Heinzen D J 1993 Phys. Rev. Lett. 71 2204

    [20]

    Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J, Grimm R 2003 Science 302 2101

    [21]

    van de Meerakker S Y T, Labazan I, Hoekstra S, Küpper J, Meijer G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S1077

    [22]

    Bochinski J R, Hudson E R, Lewandowski H J, Meijer G, Ye J 2003 Phys. Rev. Lett. 91 243001

    [23]

    Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G, Hinds E A 2004 Phys. Rev. Lett. 92 173002

    [24]

    Jung S, Tiemann E, Lisdat C 2006 Phys. Rev. A 74 040701

    [25]

    Wall T E, Kanem J F, Dyne J M, Hudson J J, Sauer B E, Hinds E A, Tarbutt M R 2011 Phys. Chem. Chem. Phys. 13 18991

    [26]

    Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L, Ye J 2006 Phys. Rev. A 73 063404

    [27]

    Belthem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A, Meijer G 2000 Nature 406 491

    [28]

    van de Meerakker S Y T, Smeets P H M, Vanhaecke N, Jongma R T, Meijer G 2005 Phys. Rev. Lett. 94 023004

    [29]

    Hoekstra S, Metsälä M, Zieger P C, Scharfenberg L, Gilijamse J J, Meijer G, van de Meerakker S Y T 2007 Phys. Rev. A 76 063408

    [30]

    Wang Q, Li S Q, Hou S Y, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 013701

    [31]

    Li S Q, Xu L, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 123701

    [32]

    Wang Z X, Gu Z X, Deng L Z, Yin J P 2015 Chin. Phys. B 24 053701

    [33]

    Gilijamse J J, Hoekstra S, van de Meerakker S Y T, Groenenboom G C, Meijer G 2006 Science 313 1617

    [34]

    Kirste M, Wang X G, Schewe H C, Meijer G, Liu K, van der Avoird A, Janssen L M C, Gubbels K B, Groenenboom G C, van de Meerakker S Y T 2012 Science 338 1060

    [35]

    von Zastrow A, Onvlee J, Vogels S N, Groenenboom G C, van der Avoird A, T van de Meerakker S Y 2014 Nature Chemistry 6 216

    [36]

    Tkáč O, Saha A K, Onvlee J, Chung-Hsin Yang, Sarma G, Bishwakarma C K, van de Meerakker S Y T, van der Avoird A, Parker D H, Orr-Ewing A J 2014 Phys. Chem. Chem. Phys. 16 477

    [37]

    Crompvoets F M H, Jongma R T, Bethlem H L, van Roij A J A, Meijer G 2002 Phys. Rev. Lett. 89 093004

    [38]

    Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

    [39]

    Quintero-Pérez M, Jansen P, Wall T E, van den Berg J E, Hoekstra S, Bethlem H L 2013 Phys. Rev. Lett. 110 133003

    [40]

    Fu G B, Deng L Z, Yin J P 2008 Chin. Phys. Lett. 25 923

    [41]

    Deng L Z, Fu G B, Yin J P 2009 Chin. Phys. B18 0149

    [42]

    Deng L Z 2008 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [邓联忠 2008 博士学位论文(上海: 华东师范大学)]

    [43]

    Hou S Y, Li S Q, Deng L Z, Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301

    [44]

    Hou S Y 2013 Ph. D. Dissertation (Shanghai: East China Normal University) (in Chinese) [侯顺永 2013 博士学位论文(上海: 华东师范大学)]

    [45]

    Gordy W, Cook R 1970 Microwave molecular spectra (New York: John Wiley & Sons Inc) p187-188

    [46]

    van de Meerakker S Y T, Vanhaecke N, Meijer G 2006 Annu. Rev. Phys. Chem. 57 159

  • [1] Wang Yue-Yang, Yin Jun-Hao, Yan Kang, Lin Qin-Ning, Pang Ren-Jun, Wang Ze-Sen, Yang Tao, Yin Jian-Ping. Three-dimensional magneto-optical trapping model of CaH molecule based on multi-energy-level rate equation. Acta Physica Sinica, 2022, 71(16): 163701. doi: 10.7498/aps.71.20220304
    [2] Chen Chang-Yuan, Sun Guo-Hua, Wang Xiao-Hua, Sun Dong-Sheng, You Yuan, Lu Fa-Lin, Dong Shi-Hai. Exact solutions to Stark effect of rigid symmetric-top molecules. Acta Physica Sinica, 2021, 70(18): 180301. doi: 10.7498/aps.70.20210214
    [3] Bai Su-Ying, Bai Jing-Xu, Han Xiao-Xuan, Jiao Yue-Chun, Zhao Jian-Ming. Ultra-cold long-range Rydberg-ground molecules. Acta Physica Sinica, 2021, 70(12): 123201. doi: 10.7498/aps.70.20202229
    [4] Yin Jun-Hao, Yang Tao, Yin Jian-Ping. Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling. Acta Physica Sinica, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [5] Lu Bo, Wang Da-Jun. Ultracold dipolar molecules. Acta Physica Sinica, 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [6] Chen Tao, Yan Bo. Laser cooling and trapping of polar molecules. Acta Physica Sinica, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [7] Qin Yan, Li Sheng-Chang. Adiabatic conversion of ultracold atoms into molecules via square-shaped pulse field. Acta Physica Sinica, 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [8] Xu Xue-Yan, Hou Shun-Yong, Yin Jian-Ping. Chip-based controllable Ioffe-typed electrostatic mirotrap for cold molecules. Acta Physica Sinica, 2018, 67(11): 113701. doi: 10.7498/aps.67.20180206
    [9] Li Xiao-Yun, Sun Bo-Wen, Xu Zheng-Qian, Chen Jing, Yin Ya-Ling, Yin Jian-Ping. Theoritical research on optical Stark deceleration and trapping of neutral molecular beams based on modulated optical lattices. Acta Physica Sinica, 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [10] Zhao Yan-Ting, Yuan Jin-Peng, Ji Zhong-Hua, Li Zhong-Hao, Meng Teng-Fei, Liu Tao, Xiao Lian-Tuan, Jia Suo-Tang. The temperature measurement for the ultracold Cs2 molecules formed by photoassociation. Acta Physica Sinica, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [11] Li Guan-Qiang, Peng Ping. Effects of external field parameters on conversion from ultracold atoms to heteronuclear triatomic molecules. Acta Physica Sinica, 2011, 60(11): 110304. doi: 10.7498/aps.60.110304
    [12] Lu Jun-Fa, Zhou Qi, Yin Jian-Ping, Ji Xian-Ming. A combinative triple-well optical trap for three-species cold atoms or molecules. Acta Physica Sinica, 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [13] Shi Shun-Ping, Li Yong, Fan Yong-Sheng, Chen Xu, Zhou Wei. Molecular dynamics simulation for the impact of hydrazineon the water of pressurized water reactors. Acta Physica Sinica, 2011, 60(3): 032802. doi: 10.7498/aps.60.032802
    [14] Xu Xue-Yan, Chen Hai-Bo, Yin Jian-Ping. A controllable electrostatic double-well trap for cold polar molecules. Acta Physica Sinica, 2009, 58(3): 1563-1568. doi: 10.7498/aps.58.1563
    [15] Mu Ren-Wang, Ji Xian-Ming, Yin Jian-Ping. A controllable longitudinal double-well optical dipole trap for cold atoms (or cold molecules). Acta Physica Sinica, 2006, 55(11): 5795-5802. doi: 10.7498/aps.55.5795
    [16] Ji Xian-Ming, Lu Jun-Fa, Mu Ren-Wang, Yin Jian-Ping. Array of micro-optical traps for cold atoms or cold molecules using a Damman grating. Acta Physica Sinica, 2006, 55(7): 3396-3402. doi: 10.7498/aps.55.3396
    [17] Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Controllable four-well optical trap for cold atoms or molecules. Acta Physica Sinica, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [18] Mu Ren-Wang, Li Ya-Li, Ji Xian-Ming, Yin Jian-Ping. Generation of controllable double-well optical trap for cold atoms (molecules) and its experimental studies. Acta Physica Sinica, 2006, 55(12): 6333-6341. doi: 10.7498/aps.55.6333
    [19] Ji Xian-Ming, Yin Jian-Ping. Controllable doublewell optical trapfor cold atoms or molecules. Acta Physica Sinica, 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
    [20] XIE XIAO-XIANG, J. BIESNER, K. H. WELGE. SELECTIVE PHOTODISSOCIATION OF AMMONIA AT 000 AND 201 BANDS. Acta Physica Sinica, 1988, 37(8): 1260-1266. doi: 10.7498/aps.37.1260
Metrics
  • Abstract views:  5295
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  04 February 2015
  • Accepted Date:  15 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map