-
In the paper the coupling impurities theory is used, and both s-d interaction effect and phonon effect in dilute magnetic alloys are discussed . The Green’s function is used to analyse the Hamiltonian of the system. In copper-iron dilute magnetic alloy the magnetic impurities interaction has a huge impact on thermoelectric power in the condition of high concentration of iron. Theoretic value of thermoelectric power of dilute magnetic copper-iron alloy with high concentration of iron changing with temperature is given. We have chosen three typical copper-iron dilute magnetic alloys and calculated the thermoelectric power under the effect of impurities and the effect of impurities interaction. Their atomic percentage concentrations are 0.1%, 0.13% and 0.15% respectively. Theoretical value of the thermoelectric power under the effect of impurities interaction in copper-iron alloy complies with experimental value. This paper provides the basic theoretical analysis for promoting the application of low-temperature copper-iron dilute magnetic thermocouple.
-
Keywords:
- dilute magnetic copper-iron thermocouple /
- magnetic impurity /
- Kondo effect /
- calibration at low temperature
[1] Jun K 1965 Progress of Theoretical Physics 34 372
[2] Wang H L, Gao H C 1990 Physica B 165 41
[3] Wang H L, Liu N, Chen L Q, Gao H C, Wu H L 1985 Acta Physica Temperature Humilis Sinica 7 72 (in Chinese) [王惠龄, 刘宁, 陈立青, 高鸿春, 武荷莲 1985 低温物理 7 72]
[4] Ma X C, CHEN Z Y 1991 Chinese Journal of Low Temperature Physics 13 363 (in Chinese) [马信昌, 陈宗蕴 1991 低温 13 363]
[5] Rubin L G 1997 Cryogenics 37 341
[6] Wang H L, Rao R S, Wang J Journal of Physics: Conference Series Buenos Aires, Argentina, August, 2014 p1742
[7] Wang H L, Huang L B, Liu M Y 2014 Chinese Society of Engineering Thermophysics Academic Conference Xi’an, China, November, 2014 p4
[8] Anderson P W 1961 Physical Review 124 41
[9] Li Z Z, Hu X X, Wang J C 1985 Acta Phys. Sin. 34 145 (in Chinese) [李正中, 胡筱欣, 王金才 1985 34 145]
[10] Wang H L, Zhu X B, Jiang Z H, Wang H 1996 Czechoslovak Journal of Physics 46 2533
[11] Chen L 2001 Chinses Journal of Low Temperature Physics 23 48 (in Chinese) [陈丽 2001 低温 23 48]
[12] Zhang S W, Ouyang M, Wang Z H 1979 Journal of Instrument Materials 3 25 (in Chinese) [张书, 文欧阳明, 王振华 1979 仪表材料 3 25]
[13] Gao H C 1982 Journal of Instrument Materials 13 36 (in Chinese) [高鸿春 1982 仪表材料 13 36]
-
[1] Jun K 1965 Progress of Theoretical Physics 34 372
[2] Wang H L, Gao H C 1990 Physica B 165 41
[3] Wang H L, Liu N, Chen L Q, Gao H C, Wu H L 1985 Acta Physica Temperature Humilis Sinica 7 72 (in Chinese) [王惠龄, 刘宁, 陈立青, 高鸿春, 武荷莲 1985 低温物理 7 72]
[4] Ma X C, CHEN Z Y 1991 Chinese Journal of Low Temperature Physics 13 363 (in Chinese) [马信昌, 陈宗蕴 1991 低温 13 363]
[5] Rubin L G 1997 Cryogenics 37 341
[6] Wang H L, Rao R S, Wang J Journal of Physics: Conference Series Buenos Aires, Argentina, August, 2014 p1742
[7] Wang H L, Huang L B, Liu M Y 2014 Chinese Society of Engineering Thermophysics Academic Conference Xi’an, China, November, 2014 p4
[8] Anderson P W 1961 Physical Review 124 41
[9] Li Z Z, Hu X X, Wang J C 1985 Acta Phys. Sin. 34 145 (in Chinese) [李正中, 胡筱欣, 王金才 1985 34 145]
[10] Wang H L, Zhu X B, Jiang Z H, Wang H 1996 Czechoslovak Journal of Physics 46 2533
[11] Chen L 2001 Chinses Journal of Low Temperature Physics 23 48 (in Chinese) [陈丽 2001 低温 23 48]
[12] Zhang S W, Ouyang M, Wang Z H 1979 Journal of Instrument Materials 3 25 (in Chinese) [张书, 文欧阳明, 王振华 1979 仪表材料 3 25]
[13] Gao H C 1982 Journal of Instrument Materials 13 36 (in Chinese) [高鸿春 1982 仪表材料 13 36]
Catalog
Metrics
- Abstract views: 6167
- PDF Downloads: 157
- Cited By: 0