-
Optical clocks are considered as promising candidates for redefining the second in the International System of Units. Compared with microwave clocks, optical clocks are powerful tools for the fundamental research such as the constancy of the fundamental constants, the validity of Einstein’s theory of general relativity, and the predictions of quantum electrodynamics. Recently two research groups have demonstrated the optical clocks with an unprecedented precision level of 10-18, which is two orders better than the present primary frequency standard. Using two Sr optical clocks and three Cs fountain clocks, SYRTE group has demonstrated the definition of second with optical clocks.#br#For redefining the second with optical clocks in the future, the optical clocks from the remote laboratories should have a high precision and the frequency of the optical clocks need to be transferred over a long distance, with extremely high precision. Unfortunately the conventional means of frequency transfer such as two-way satellite time and frequency transfer can reach a 10-16 level in one day which is far below the requirement for an optical clocks. Various methods have been developed to transfer optical frequency signal via optical fibers. Especially a research group from Germany has achieved a frequency transfer stability of 10-19 level in hundreds of seconds with a fiber length of 1840 km.#br#We demonstrate the recent development of optical frequency transfer over a 70-km fiber spool at National Time Service Center. The measurement shows that the compensation for the fiber noise is close to the limitation induced by the fiber delay for the Fourier frequency from 1 Hz to 250 Hz. The transfer stability (Allan deviation) of the fiber link is 1.2×10-15 in 1 s averaging time, and 1.4×10-18 in 10000 s. A preliminary test of the optical frequency transfer over a 100-km spooled fiber is achieved with a stability of roughly one order worse than the 71 km result, 5×10-15 in 1 s.#br#We demonstrate a new scheme of remote compensation for optical frequency transfer via fibers against conventional local compensation method. This new scheme has the advantage of great simplification of the local site, which can find applications in massive extension of star network. The key feature is that we transfer the mixture of the round-trip signal and local reference to the remote user’s end via an auxiliary fiber. At remote site, the fiber noise is measured and compensated by AOM2 accordingly.#br#Transfer stabilities of 13×10-15 in 1 s averaging time and 4.8×10-18 in 10000 s are achieved with the remote fiber noise compensation via a 25 km fiber spool. The demonstrated transfer stability is comparable to that obtained by the local fiber noise compensation method.#br#The future star fiber network of optical frequency transfer can benefit from this method, because the simpler local setup is required and even can be shared in the central site for multitudinous remote users.
-
Keywords:
- time and frequency /
- fiber networks /
- optical frequency transfer /
- remote fiber noise compensation method
[1] Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630
[2] Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hänsch T W 2011 Phys. Rev. Lett. 107 203001
[3] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808
[4] Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801
[5] Schiller S, Tino G M, Gill P, Salomon C, Sterr U, Peik E, Nevsky A, Görlitz A, Svehla D, Ferrari G, Poli N, Lusanna L, Klein H, Margolis H, Lemonde P, Laurent P, Santarelli G, Clairon A, Ertmer W, Rasel E, Mller J, Iorio L, Lämmerzahl C, Dittus H, Gill E, Rothacher M, Flechner F, Schreiber U, Flambaum V, Ni W, Liu L, Chen X, Chen J, Gao K, Cacciapuoti L, Holzwarth R, He M P, Schäfer W 2009 Exp. Astron. 23 573
[6] Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801
[7] Katori H 2011 Nat. Photon. 5 203
[8] Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D, Oates C W 2012 Phys. Rev. Lett. 108 153002
[9] Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M, Ye J 2011 Science 331 1043
[10] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215
[11] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71
[12] Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185
[13] Gill P, Riehle F 2006 Proceedings of the 20th European Frequency and Time Forum Braunschweig, Germany, March 27-30, 2006 p282
[14] Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2782
[15] Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M, Amagai J 2012 IEEE Trans. Ultrason Ferroelectr. Freq. Control 59 2625
[16] Fujieda M, Kumagai M, Nagano S 2010 IEEE Trans. Ultrason Ferroelect. Freq. Control 57 168
[17] Marra G, Margolis H S, Lea S N, Gill P 2010 Opt. Lett. 35 1025
[18] Lopez O, Amy-Klein A, Daussy C, Chardonnet C, Narbonneau F 2008 Eur. Phys. J. D 48 35
[19] Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U, Schnatz H 2009 Opt. Lett. 34 2270
[20] Jiang H, Kéfélian F, Crane S, Lopez O, Lours M, Millo J, Holleville D, Lemonde P, Chardonnet C, Amy-Klein A, Santarelli G 2008 J. Opt. Soc. Am. B 25 2029
[21] Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518
[22] Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284
[23] Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801
[24] Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 1994 Opt. Lett. 19 1777
[25] Schediwy S W, Gozzard D, Baldwin K G H, Orr B J, Warrington R B, Aben G, Luiten A N 2013 Opt. Lett. 38 2893
-
[1] Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630
[2] Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hänsch T W 2011 Phys. Rev. Lett. 107 203001
[3] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808
[4] Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801
[5] Schiller S, Tino G M, Gill P, Salomon C, Sterr U, Peik E, Nevsky A, Görlitz A, Svehla D, Ferrari G, Poli N, Lusanna L, Klein H, Margolis H, Lemonde P, Laurent P, Santarelli G, Clairon A, Ertmer W, Rasel E, Mller J, Iorio L, Lämmerzahl C, Dittus H, Gill E, Rothacher M, Flechner F, Schreiber U, Flambaum V, Ni W, Liu L, Chen X, Chen J, Gao K, Cacciapuoti L, Holzwarth R, He M P, Schäfer W 2009 Exp. Astron. 23 573
[6] Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801
[7] Katori H 2011 Nat. Photon. 5 203
[8] Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D, Oates C W 2012 Phys. Rev. Lett. 108 153002
[9] Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M, Ye J 2011 Science 331 1043
[10] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215
[11] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71
[12] Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185
[13] Gill P, Riehle F 2006 Proceedings of the 20th European Frequency and Time Forum Braunschweig, Germany, March 27-30, 2006 p282
[14] Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2782
[15] Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M, Amagai J 2012 IEEE Trans. Ultrason Ferroelectr. Freq. Control 59 2625
[16] Fujieda M, Kumagai M, Nagano S 2010 IEEE Trans. Ultrason Ferroelect. Freq. Control 57 168
[17] Marra G, Margolis H S, Lea S N, Gill P 2010 Opt. Lett. 35 1025
[18] Lopez O, Amy-Klein A, Daussy C, Chardonnet C, Narbonneau F 2008 Eur. Phys. J. D 48 35
[19] Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U, Schnatz H 2009 Opt. Lett. 34 2270
[20] Jiang H, Kéfélian F, Crane S, Lopez O, Lours M, Millo J, Holleville D, Lemonde P, Chardonnet C, Amy-Klein A, Santarelli G 2008 J. Opt. Soc. Am. B 25 2029
[21] Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518
[22] Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284
[23] Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801
[24] Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 1994 Opt. Lett. 19 1777
[25] Schediwy S W, Gozzard D, Baldwin K G H, Orr B J, Warrington R B, Aben G, Luiten A N 2013 Opt. Lett. 38 2893
Catalog
Metrics
- Abstract views: 7037
- PDF Downloads: 358
- Cited By: 0