Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of deuteration degree on the transverse stimulated Raman scattering gain coefficient of DKDP crystal

Chai Xiang-Xu Li Fu-Quan Wang Sheng-Lai Feng Bin Zhu Qi-Hua Liu Bao-An Sun Xun Xu Xin-Guang

Citation:

Influence of deuteration degree on the transverse stimulated Raman scattering gain coefficient of DKDP crystal

Chai Xiang-Xu, Li Fu-Quan, Wang Sheng-Lai, Feng Bin, Zhu Qi-Hua, Liu Bao-An, Sun Xun, Xu Xin-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the spontaneous Raman spectra of K(H1-xDx)2PO4 (DKDP) crystals with different deuteration degrees in the Z(XX)Y scattering geometry are measured. And the Raman spectroscopy parameters including Raman shift, full-width at half maximum, and scattering intensity, which are related to the transverse stimulated Raman scattering (TSRS) gain coefficients, are analyzed in detail. Using the Raman scattering from water as a reference, the TSRS gain coefficients of DKDP crystals with different deuteration degrees are derived. It is found that with increasing deuteration degree in DKDP crystal the TSRS gain coefficient first decreases to about 40.1% of the KDP crystal, then increases to about 68.9%. We regard the change of the full-width at half maximum as the main reason for the dependence of TSRS gain coefficient on the deuteration degree.
    [1]

    Zhang K C, Wang X M 2005 Nonlinear optical crystal material science (Second edition, Beijing: Science Press) pp133-151 (In Chinese) [张克从, 王希敏 2005 非线性光学晶体材料科学 (第二版, 北京: 科学出版社)第133–151页]

    [2]

    Yang Y S, Zheng W G, Han W, Che Y L, Tan J C, Xiang Y, Jia H T 2007 Acta Phys. Sin. 56 6468 (in Chinese) [杨义胜, 郑万国, 韩伟, 车雅良, 谭吉春, 向勇, 贾怀庭 2007 56 6468]

    [3]

    Wang J, Zhang X M, Li F Q, Han W, Li K Y, Fen B 2011 Chin. J. Lasers 38 0502011 (in Chinese) [王静, 张小民, 李富全, 韩伟, 李恪宇, 冯斌 2011 中国激光 38 0502011]

    [4]

    Barker C E, Sacks R A, Van Wonterghem B M, Caird J A, Murray J R, Campbell J H, Kyle K, Ehrlich R B, Nielsen N D 1997 Proc. SPIE 2633 501

    [5]

    Novikov V N, Belkov S A, Buiko S A, Voronich I N, Efimov D G, Zaretsky A I, Kochemasov G G, Kravchenko A G, Kulikov S M, Lebedev V A, Okutin G P, Rukavishnikov N N, Sukharev S A 1999 Proc. SPIE 3492 1009

    [6]

    Shur M S 1966 Soviet Phys. Crystallography 11 394

    [7]

    Chai X X, Zhu Q H, Li F Q, Wang S L, Zhou H L, Xu X G 2014 High Power Laser and Particle Beams 26 022014 (in Chinese) [柴向旭, 朱启华, 李富全, 王圣来, 周海亮, 许心光 2014 强激光与粒子束 26 022014]

    [8]

    Ji L L, Zhu B Q, Zhan T Y, Dai Y P, Zhu J, Ma W X, Lin Z Q 2011 Acta Phys. Sin. 60 094210 (in Chinese) [季来林, 朱宝强, 詹廷宇, 戴亚平, 朱检, 马伟新, 林尊琪2011 60 094210]

    [9]

    Wegner P J, Henesian M A, Speck D R, Bibeau C, Ehrlich R B, Laumann C W, Lawson J K, Weiland T L 1992 Appl. Opt. 31 6414

    [10]

    Han W, Wang F, Zhou L D, Li F Q, Feng B, Cao H B, Zhao J P, Li S, Zheng K X, Wei X F, Gong M L, Zheng W G 2013 Opt Express 21 30481

    [11]

    Smith W L, Henesian M A, Milanovich F P 1984 1983 Laser Program Annual Report (UCRL-50021-83) (Livermore CA: Lawrence Livermore National Laboratory) 6 61

    [12]

    Belkov S A, Kochemasov G G, Kulikov S M, Novikov V N, Rukavishnikov N N, Sukharev S A, Voronich I N, Zaretski A I 1997 Proc. SPIE 2633 506

    [13]

    Guo Y J, Tang S X, Hui H C, Wang Y Y, Tang W, Zhu B Q, Lin Z Q 2013 Proc. SPIE 8786 87860U

    [14]

    Demos S G, Raman R N, Yang S T, Negres R A, Schaffers K I, Henesian M A 2011 Opt. Express 19 21050

    [15]

    Demos S G, Raman R N, Yang S T, Negres R A, Schaffers K I, Henesian M A 2011 Proc. SPIE 8190 81900S

    [16]

    Cheng G X 2001 Principle and application of Raman and Brillouin scattering (Beijing: Science Press) pp 32-83 (In Chinese) [程光熙 2001 拉曼布里渊散射原理及应用 (北京: 科学出版社) 第32–83页]

    [17]

    Wang Q G, Su L B, Li H J, Xiong W, Yuan H, Zheng L H, Xu X D, Wu F, Tang H L, Jiang D P, Xu J 2012 Chin. Phys. B 21 054217

    [18]

    Maier M, Kaiser W 1969 Phys. Rev. 177 580

    [19]

    Loudon R 1964 Advan. Phys. 13 423

    [20]

    Liu B A, Yin X, Sun X, Xu M X, Ji S H, Xu X G, Zhang J F 2012 J. Appl. Cryst. 45 439

    [21]

    Liu B A, Zhou H L, Zhang Q H, Xu M X, Ji S H, Zhu L L, Zhang L S, Liu F F, Sun X, Xu X G 2013 Chin. Phys. Lett. 30 067804

    [22]

    Loiacono G M, Balascio J F, Osborne W 1974 Appl. Phys. Lett. 24 455

    [23]

    Wang K P, Huang Y 2011 Chin. Phys. B 20 077401

    [24]

    Ye L W, Li Z D, Su G B, Zhuang X X, Zheng G Z 2007 Opt. Commun. 275 399

    [25]

    Carollne M P, Adams W A 1979 J. Phys. Chem. 83 814

    [26]

    Tun Z, Nelmes R J, Kuhs W F, Stanfield R F D 1988 J. Phys. C 21 245

    [27]

    Anachkova E, Savatinova I 1985 Phys. Stat. Sol. (b) 131 K101

    [28]

    Li Z 2005 M. S. Thesis (Beijing: Beijing University of Technology) (In Chinese) [李政 2005 硕士学位论文 (北京: 北京工业大学)]

    [29]

    Chang R K, Lacina B, Pershan P S 1966 Phys. Rev. Lett. 17 755

    [30]

    Lacina W B, Pershan P S. 1970 Phys. Rev. B 1 1765

    [31]

    Bischel W K, Black G. 1983 AIP Conf. Proc. 100 181

    [32]

    Faris G W, Copeland R A 1997 Appl. Opt. 36 2686

    [33]

    Schiebener P, Straub J, Sengers J M H L, Gallagher J S 1990 J. Phys. Chem. Ref. Data 19 677

    [34]

    Yakshin M A, Kim D W, Kim Y S, Broslavets Y Y, Sidoryuk O E, Goldstein S 1997 Laser Phys. 7 941

    [35]

    Huser T, Hollars C W, Siekhaus W J 2004 Appl. Spectrosc. 58 349

  • [1]

    Zhang K C, Wang X M 2005 Nonlinear optical crystal material science (Second edition, Beijing: Science Press) pp133-151 (In Chinese) [张克从, 王希敏 2005 非线性光学晶体材料科学 (第二版, 北京: 科学出版社)第133–151页]

    [2]

    Yang Y S, Zheng W G, Han W, Che Y L, Tan J C, Xiang Y, Jia H T 2007 Acta Phys. Sin. 56 6468 (in Chinese) [杨义胜, 郑万国, 韩伟, 车雅良, 谭吉春, 向勇, 贾怀庭 2007 56 6468]

    [3]

    Wang J, Zhang X M, Li F Q, Han W, Li K Y, Fen B 2011 Chin. J. Lasers 38 0502011 (in Chinese) [王静, 张小民, 李富全, 韩伟, 李恪宇, 冯斌 2011 中国激光 38 0502011]

    [4]

    Barker C E, Sacks R A, Van Wonterghem B M, Caird J A, Murray J R, Campbell J H, Kyle K, Ehrlich R B, Nielsen N D 1997 Proc. SPIE 2633 501

    [5]

    Novikov V N, Belkov S A, Buiko S A, Voronich I N, Efimov D G, Zaretsky A I, Kochemasov G G, Kravchenko A G, Kulikov S M, Lebedev V A, Okutin G P, Rukavishnikov N N, Sukharev S A 1999 Proc. SPIE 3492 1009

    [6]

    Shur M S 1966 Soviet Phys. Crystallography 11 394

    [7]

    Chai X X, Zhu Q H, Li F Q, Wang S L, Zhou H L, Xu X G 2014 High Power Laser and Particle Beams 26 022014 (in Chinese) [柴向旭, 朱启华, 李富全, 王圣来, 周海亮, 许心光 2014 强激光与粒子束 26 022014]

    [8]

    Ji L L, Zhu B Q, Zhan T Y, Dai Y P, Zhu J, Ma W X, Lin Z Q 2011 Acta Phys. Sin. 60 094210 (in Chinese) [季来林, 朱宝强, 詹廷宇, 戴亚平, 朱检, 马伟新, 林尊琪2011 60 094210]

    [9]

    Wegner P J, Henesian M A, Speck D R, Bibeau C, Ehrlich R B, Laumann C W, Lawson J K, Weiland T L 1992 Appl. Opt. 31 6414

    [10]

    Han W, Wang F, Zhou L D, Li F Q, Feng B, Cao H B, Zhao J P, Li S, Zheng K X, Wei X F, Gong M L, Zheng W G 2013 Opt Express 21 30481

    [11]

    Smith W L, Henesian M A, Milanovich F P 1984 1983 Laser Program Annual Report (UCRL-50021-83) (Livermore CA: Lawrence Livermore National Laboratory) 6 61

    [12]

    Belkov S A, Kochemasov G G, Kulikov S M, Novikov V N, Rukavishnikov N N, Sukharev S A, Voronich I N, Zaretski A I 1997 Proc. SPIE 2633 506

    [13]

    Guo Y J, Tang S X, Hui H C, Wang Y Y, Tang W, Zhu B Q, Lin Z Q 2013 Proc. SPIE 8786 87860U

    [14]

    Demos S G, Raman R N, Yang S T, Negres R A, Schaffers K I, Henesian M A 2011 Opt. Express 19 21050

    [15]

    Demos S G, Raman R N, Yang S T, Negres R A, Schaffers K I, Henesian M A 2011 Proc. SPIE 8190 81900S

    [16]

    Cheng G X 2001 Principle and application of Raman and Brillouin scattering (Beijing: Science Press) pp 32-83 (In Chinese) [程光熙 2001 拉曼布里渊散射原理及应用 (北京: 科学出版社) 第32–83页]

    [17]

    Wang Q G, Su L B, Li H J, Xiong W, Yuan H, Zheng L H, Xu X D, Wu F, Tang H L, Jiang D P, Xu J 2012 Chin. Phys. B 21 054217

    [18]

    Maier M, Kaiser W 1969 Phys. Rev. 177 580

    [19]

    Loudon R 1964 Advan. Phys. 13 423

    [20]

    Liu B A, Yin X, Sun X, Xu M X, Ji S H, Xu X G, Zhang J F 2012 J. Appl. Cryst. 45 439

    [21]

    Liu B A, Zhou H L, Zhang Q H, Xu M X, Ji S H, Zhu L L, Zhang L S, Liu F F, Sun X, Xu X G 2013 Chin. Phys. Lett. 30 067804

    [22]

    Loiacono G M, Balascio J F, Osborne W 1974 Appl. Phys. Lett. 24 455

    [23]

    Wang K P, Huang Y 2011 Chin. Phys. B 20 077401

    [24]

    Ye L W, Li Z D, Su G B, Zhuang X X, Zheng G Z 2007 Opt. Commun. 275 399

    [25]

    Carollne M P, Adams W A 1979 J. Phys. Chem. 83 814

    [26]

    Tun Z, Nelmes R J, Kuhs W F, Stanfield R F D 1988 J. Phys. C 21 245

    [27]

    Anachkova E, Savatinova I 1985 Phys. Stat. Sol. (b) 131 K101

    [28]

    Li Z 2005 M. S. Thesis (Beijing: Beijing University of Technology) (In Chinese) [李政 2005 硕士学位论文 (北京: 北京工业大学)]

    [29]

    Chang R K, Lacina B, Pershan P S 1966 Phys. Rev. Lett. 17 755

    [30]

    Lacina W B, Pershan P S. 1970 Phys. Rev. B 1 1765

    [31]

    Bischel W K, Black G. 1983 AIP Conf. Proc. 100 181

    [32]

    Faris G W, Copeland R A 1997 Appl. Opt. 36 2686

    [33]

    Schiebener P, Straub J, Sengers J M H L, Gallagher J S 1990 J. Phys. Chem. Ref. Data 19 677

    [34]

    Yakshin M A, Kim D W, Kim Y S, Broslavets Y Y, Sidoryuk O E, Goldstein S 1997 Laser Phys. 7 941

    [35]

    Huser T, Hollars C W, Siekhaus W J 2004 Appl. Spectrosc. 58 349

  • [1] Wang Cong, Lü Dong-Xiang. Theoretical study of picosecond anti-Stokes Raman frequency converter based on pump-probe method. Acta Physica Sinica, 2021, 70(9): 094202. doi: 10.7498/aps.70.20201353
    [2] Wang Ao-Shuang, Xiao Qing-Quan, Chen Hao, He An-Na, Qin Ming-Zhe, Xie Quan. Design and simulation of Mg2Si/Si avalanche photodiode. Acta Physica Sinica, 2021, 70(10): 108501. doi: 10.7498/aps.70.20201923
    [3] Liu Tao, Zhao Yong-Peng, Ding Yu-Jie, Li Xiao-Qiang, Cui Huai-Yu, Jiang Shan. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [4] Wang Mei-Jie, Jia Wei-Guo, Zhang Si-Yuan, Menke Nei-Mu-Le, Yang Jun, Zhang Jun-Ping. Effect of Raman gain on the state of polarization evolution in a low-birefringence fiber. Acta Physica Sinica, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [5] Jiang Jian-Jun, Li He-Ping, Dai Li-Dong, Hu Hai-Ying, Zhao Chao-Shuai. Raman spectra based pressure calibration of the non-gauge sapphire anvil cell at high temperature and high pressure. Acta Physica Sinica, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [6] Qiao Hai-Long, Jia Wei-Guo, Wang Xu-Dong, Liu Bao-Lin, Menke Neimule, Yang Jun, Zhang Jun-Ping. Effect of Raman gain on the characteristic of soliton transmission in birefringence optical fiber. Acta Physica Sinica, 2014, 63(9): 094208. doi: 10.7498/aps.63.094208
    [7] Qiao Hai-Long, Jia Wei-Guo, Liu Bao-Lin, Wang Xu-Dong, Menke Neimule, Yang Jun, Zhang Jun-Ping. Effect of Ramam gain on the characteristic of soliton propagation. Acta Physica Sinica, 2013, 62(10): 104212. doi: 10.7498/aps.62.104212
    [8] Chen Wei, Chen Xue-Gang, Shi Jiu-Lin, He Xing-Dao, Mo Xiao-Feng, Liu Juan. Measurement of gain coefficients of stimulated Brillouin scattering in water at different temperatures. Acta Physica Sinica, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [9] Yang Jin-Jin, Li Hui-Jun, Wen Wen, Huang Guo-Xiang. Optical bistability via active Raman gain in an n-type atomic medium. Acta Physica Sinica, 2012, 61(22): 224204. doi: 10.7498/aps.61.224204
    [10] Jia Wei-Guo, Qiao Li-Rong, Wang Xu-Ying, Ke Neimule, Yang Jun, Zhang Jun-Ping. The gain spectrum character under Raman scattering and parametric amplification. Acta Physica Sinica, 2012, 61(19): 194209. doi: 10.7498/aps.61.194209
    [11] Jia Wei-Guo, Qiao Li-Rong, Wang Xu-Ying, Yang Jun, Zhang Jun-Ping, Ke Neimule. Raman effect on parametric amplification gain spectrum in birefringence fiber. Acta Physica Sinica, 2012, 61(9): 094215. doi: 10.7498/aps.61.094215
    [12] Liu Zu-Xue, Feng Ming, Guo Qing-Hua, Qiao Li, Lü Ke-Cheng. Theoretical analysis on gain characteristics of siliconRaman amplifiers. Acta Physica Sinica, 2011, 60(1): 014214. doi: 10.7498/aps.60.014214
    [13] Duan Bao-Xing, Yang Yin-Tang. Calculation of Raman shifts of Si(1-x)Gex and amorphous silicon using Keating model. Acta Physica Sinica, 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [14] Lu Cui-Ping, Yuan Chun-Hua, Zhang Wei-Ping. The property of quantum noise in active Raman gain medium. Acta Physica Sinica, 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [15] Qiao Xiu-Mei, Zhang Guo-Ping. Theoretical study of TCE Ne-like Ge 19.6nm X-ray laser. Acta Physica Sinica, 2007, 56(9): 5248-5251. doi: 10.7498/aps.56.5248
    [16] Zhu Jun, Mao Xiang-Yu, Chen Xiao-Bing. Study on Raman spectra of Bi_4-xLa_xTi_3O_12-SrBi_4-yLayTi_4O_15 intergrowth ferroelectrics. Acta Physica Sinica, 2004, 53(11): 3929-3933. doi: 10.7498/aps.53.3929
    [17] Pu Xiao-Yun, Yang Zheng, Jiang Nan, Chen Yong-Kang, Dai Hong. Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain. Acta Physica Sinica, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [18] Yuan Bao-Hong, Chen Zhong-Xian, Jiang Yong-Yuan, Sun Xiu-Dong, Zhou Zhong-Xiang, Yao Feng-Feng. . Acta Physica Sinica, 2002, 51(7): 1512-1516. doi: 10.7498/aps.51.1512
    [19] TAO ZHEN-LAN, D.E. AlBURGER, K.W. JONES, Y.D. YAO, Y.H. KAO. DETERMINATION OF OXYGEN CONTENT IN HIGH Tc SUPERCONDUCTORS BY DEUTERON PARTICLE ACTIVATION ANALYSIS. Acta Physica Sinica, 1993, 42(2): 326-330. doi: 10.7498/aps.42.326
    [20] ZHU DE-RUI, WANG REN, TAN JIAN-HUA, MO DANG. A STUDY ON THE GAIN COEFFICIENT OF TWO WAVE COUPLING IN DOPED KNSBN CRYSTALS. Acta Physica Sinica, 1992, 41(9): 1440-1447. doi: 10.7498/aps.41.1440
Metrics
  • Abstract views:  6510
  • PDF Downloads:  503
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2014
  • Accepted Date:  18 August 2014
  • Published Online:  05 February 2015

/

返回文章
返回
Baidu
map