Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and simulation study of 0.14 THz fundamental mode multi-beam folded waveguide traveling wave tube

Yan Sheng-Mei Su Wei Wang Ya-Jun Xu Ao Chen Zhang Jin Da-Zhi Xiang Wei

Citation:

Theoretical and simulation study of 0.14 THz fundamental mode multi-beam folded waveguide traveling wave tube

Yan Sheng-Mei, Su Wei, Wang Ya-Jun, Xu Ao, Chen Zhang, Jin Da-Zhi, Xiang Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To improve the current and output power of the THz traveling wave tube (TWT), a fundamental mode multi-beam folded waveguide (FMMBFW) TWT scheme is proposed. Firstly, an equivalent circuit model FMMBFW for calculating the high-frequency characteristic is established and compared with numerical simulation. Secondly, the transmission characteristic of 60 periods FMMBFW is analyzed. Finally, the beam-wave interaction characteristic of 0.14 THz FMMBFW TWT is completed by numerical simulation and theoretical calculation. When the DC current is 12 mA and the applied voltage is 15.75 kV, the 3 dB bandwidth of 0.14 THz FMMBFW TWT is 25 GHz (128-153 GHz), the maximum gain is 33.61 dB and the maximum output power is 23 W. When the DC current is 30 mA and the voltage is 15.75 kV, the maximum gain is 38 dB and the maximum pulse output power is 63.1 W at 0.14 THz. Compared with the fundamental single-beam folded waveguide (FW) TWT under the same working condition, the 3 dB bandwidth is doubled, its output power is raised by a factor of 9.66 and the interaction efficiency is increased by 3.22 times. Based on the same gain, the length of FMMBFW TWT is just 52.6 mm while the length of single beam FW-TWT is 78.2 mm. The proposed method can increase effectively the current of FMMBFW TWT; and the interaction gain, efficiency, 3 dB bandwidth, output power can be improved. When the gain is the same, a shorted and compact FMMBFW TWT can be constucuted.
    • Funds: Project supported by the Open Foundation of the Key Laboratory of Precision Manufacturing Technology of China Academy of Engineering Physics (Grant No. 2012CJMZZ00007).
    [1]

    Peter H S 2002 IEEE Trans. Microwave. Theory Tech. 50 910

    [2]

    John H B 2008 Phys. Plasmas 15 055502

    [3]

    Shin Y M, Larry R B, Neville C L 2009 IEEE Trans. Electron Dev. 56 3196

    [4]

    Shin Y M, Baig A, Larry R B, Tsai W C, Neville C L 2012 IEEE Trans. Electron Dev. 59 234

    [5]

    Baig A, Gamzina D, Barchfeld R, Domier C, Barnett L R, Neville C L 2012 Phys. Plasmas 19 093110

    [6]

    Field M, Griffith Z, Young A, Hillman C, Brar B 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p225

    [7]

    Kory C L, Read M, Ives R L 2009 IEEE Trans. Electron Dev. 56 713

    [8]

    Comfoltey E N, Shapiro M, Sirigiri J, Temkin R 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p127

    [9]

    Tucek J C, Basten M A, Gallagher D A, Kreischer K E 2010 11th IEEE International Vacuum Electronics Conference Monterey, USA, May 18-20, 2010 p19

    [10]

    Basten M A, Tucek J C, Gallagher D A 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p110

    [11]

    Basten M A, Tucek J C, Gallagher D A, Kreischer K E 2013 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1

    [12]

    Xu X, Wei Y Y, Shen F, Duan Z Y, Gong Y B, Yin H R, Wang W X 2011 IEEE Eletron. Dev. Lett. 32 1152

    [13]

    Lai J Q, Wei Y Y, Liu Y, Huang M Z, Tang T, Wang W X, Gong Y B 2012 Chin. Phys. B 21 068403

    [14]

    Liu L W, Wei Y Y, Wang S M, Hou Y, Yin H R, Zhao G Q, Duan Z Y, Xu J, Gong Y B, Wang W X, Yang M H 2013 Chin. Phys. B 22 108401

    [15]

    Hu Q 2012 Acta Phys. Sin. 61 014101 (in Chinese) [胡权 2012 61 014101]

    [16]

    Lai J Q, Wei Y Y, Xu X, Shen F, Liu Y, Liu Y, Huang M Z, Tang T, Gong Y B 2012 Acta Phys. Sin. 61 178501 (in Chinese) [赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬 2012 61 178501]

    [17]

    Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese) [李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋 2013 62 120703]

    [18]

    Feng J J, Cai J, Wu X P, Hu Y F, Cui Y D, Dong R T, Liu J K, Chen J, Zhang X Q 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p173

    [19]

    Gong Y B, Yin H R, Yue L N, Lu Z G, Wei Y Y, Feng J J, Duan Z Y, Xu X 2011 IEEE Trans. Plasma Sci. 39 847

    [20]

    Wang S J, Xue X Z, Wang Z C, Zhang S C, Guo J 2014 Chin. J. Vacuum Sci. Technol. 34 43 (in Chinese) [王书见, 薛谦忠, 王自成, 张世昌, 郭际2014真空科学与技术学报 34 43]

    [21]

    Dohler G, Gagne D, Gallagher D, Moats R 1987 IEDM Tech. Dig. 33 485

    [22]

    Ha H J, Jung S S, Park G S 1998 Int. J. Infrared Millim. Waves 19 1229

    [23]

    Curnow H J 1965 IEEE Trans. Microw. Theory Tech. 13 671

    [24]

    Carter R G, Liu S K 1986 IEE Proc. H, Microw. Antenn. Propag. 133 330

    [25]

    Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685

    [26]

    Marcuvitz L 1986 Waveguide Handbook (London: Peter Peregrinus) p365

  • [1]

    Peter H S 2002 IEEE Trans. Microwave. Theory Tech. 50 910

    [2]

    John H B 2008 Phys. Plasmas 15 055502

    [3]

    Shin Y M, Larry R B, Neville C L 2009 IEEE Trans. Electron Dev. 56 3196

    [4]

    Shin Y M, Baig A, Larry R B, Tsai W C, Neville C L 2012 IEEE Trans. Electron Dev. 59 234

    [5]

    Baig A, Gamzina D, Barchfeld R, Domier C, Barnett L R, Neville C L 2012 Phys. Plasmas 19 093110

    [6]

    Field M, Griffith Z, Young A, Hillman C, Brar B 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p225

    [7]

    Kory C L, Read M, Ives R L 2009 IEEE Trans. Electron Dev. 56 713

    [8]

    Comfoltey E N, Shapiro M, Sirigiri J, Temkin R 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p127

    [9]

    Tucek J C, Basten M A, Gallagher D A, Kreischer K E 2010 11th IEEE International Vacuum Electronics Conference Monterey, USA, May 18-20, 2010 p19

    [10]

    Basten M A, Tucek J C, Gallagher D A 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p110

    [11]

    Basten M A, Tucek J C, Gallagher D A, Kreischer K E 2013 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1

    [12]

    Xu X, Wei Y Y, Shen F, Duan Z Y, Gong Y B, Yin H R, Wang W X 2011 IEEE Eletron. Dev. Lett. 32 1152

    [13]

    Lai J Q, Wei Y Y, Liu Y, Huang M Z, Tang T, Wang W X, Gong Y B 2012 Chin. Phys. B 21 068403

    [14]

    Liu L W, Wei Y Y, Wang S M, Hou Y, Yin H R, Zhao G Q, Duan Z Y, Xu J, Gong Y B, Wang W X, Yang M H 2013 Chin. Phys. B 22 108401

    [15]

    Hu Q 2012 Acta Phys. Sin. 61 014101 (in Chinese) [胡权 2012 61 014101]

    [16]

    Lai J Q, Wei Y Y, Xu X, Shen F, Liu Y, Liu Y, Huang M Z, Tang T, Gong Y B 2012 Acta Phys. Sin. 61 178501 (in Chinese) [赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬 2012 61 178501]

    [17]

    Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese) [李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋 2013 62 120703]

    [18]

    Feng J J, Cai J, Wu X P, Hu Y F, Cui Y D, Dong R T, Liu J K, Chen J, Zhang X Q 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p173

    [19]

    Gong Y B, Yin H R, Yue L N, Lu Z G, Wei Y Y, Feng J J, Duan Z Y, Xu X 2011 IEEE Trans. Plasma Sci. 39 847

    [20]

    Wang S J, Xue X Z, Wang Z C, Zhang S C, Guo J 2014 Chin. J. Vacuum Sci. Technol. 34 43 (in Chinese) [王书见, 薛谦忠, 王自成, 张世昌, 郭际2014真空科学与技术学报 34 43]

    [21]

    Dohler G, Gagne D, Gallagher D, Moats R 1987 IEDM Tech. Dig. 33 485

    [22]

    Ha H J, Jung S S, Park G S 1998 Int. J. Infrared Millim. Waves 19 1229

    [23]

    Curnow H J 1965 IEEE Trans. Microw. Theory Tech. 13 671

    [24]

    Carter R G, Liu S K 1986 IEE Proc. H, Microw. Antenn. Propag. 133 330

    [25]

    Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685

    [26]

    Marcuvitz L 1986 Waveguide Handbook (London: Peter Peregrinus) p365

  • [1] Luo Ji-Run, Tang Yan-Na, Fan Yu, Peng Shu-Yuan, Xue Qian-Zhong. Comparative demonstration of multimode steady-state theory for the gyrotron traveling-wave tube based on a distributed loss-loaded metal cylindrical waveguide. Acta Physica Sinica, 2018, 67(1): 018402. doi: 10.7498/aps.67.20171831
    [2] Wang Gan-Ping, Jin Xiao, Huang Hua, Liu Zhen-Bang. Angular drift of the high current relativistic multi-beam in the hollow cylindrical waveguide. Acta Physica Sinica, 2017, 66(4): 044102. doi: 10.7498/aps.66.044102
    [3] Xue Zhi-Hao, Liu Pu-Kun, Du Chao-Hai. Research on non-linear beam-wave interaction of W-band Gyro-TWT with helical waveguide. Acta Physica Sinica, 2014, 63(8): 080201. doi: 10.7498/aps.63.080201
    [4] Peng Shu-Yuan, Wang Qiu-Shi, Zhang Zhao-Chuan, Luo Ji-Run. Multimode steady-state theory for Gyro-TWT and simulation of mode competition. Acta Physica Sinica, 2014, 63(20): 208401. doi: 10.7498/aps.63.208401
    [5] Yan Wei-Zhong, Hu Yu-Lu, Li Jian-Qing, Yang Zhong-Hai, Tian Yun-Xian, Li Bin. Research on the beam-wave interaction theory of folded waveguide traveling wave tubes based on three-port network model. Acta Physica Sinica, 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [6] Zhang Kai-Chun, Wu Zhen-Hua. Study of extended interaction oscillator with folded waveguide in sub-terahertz band. Acta Physica Sinica, 2013, 62(2): 024103. doi: 10.7498/aps.62.024103
    [7] Bai Chun-Jiang, Li Jian-Qing, Hu Yu-Lu, Yang Zhong-Hai, Li Bin. Calculation of beam-wave interaction of coupled-cavity TWT using equivalent circuit model. Acta Physica Sinica, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [8] Liu Wei-Hao, Zhang Ya-Xin, Zhou Jun, Gong Sen, Liu Sheng-Gang. Radiation from the unsymmetrical modes of the periodical waveguide structure excited by eccentric electron beam. Acta Physica Sinica, 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [9] Xue Zhi-Hao, Liu Pu-Kun, Du Chao-Hai, Li Zheng-Di. Research on non-linear beam-wave interaction of W-band gyro-TWT with helical waveguide. Acta Physica Sinica, 2012, 61(17): 170201. doi: 10.7498/aps.61.170201
    [10] Qin Fen, Wang Dong, Chen Dai-Bing, Wen Jie. Investigation of L-band higher order depressed magnetically insulated transmission line oscillator. Acta Physica Sinica, 2012, 61(9): 094101. doi: 10.7498/aps.61.094101
    [11] Yin Hai-Rong, Xu Jin, Yu Ling-Na, Gong Yu-Bing, Wei Yan-Yu. A wave-beam interaction theory for folded-waveguide traveling wave tubes. Acta Physica Sinica, 2012, 61(24): 244106. doi: 10.7498/aps.61.244106
    [12] Hu Quan. Theory and simulation of the folded waveguide traveling-wave tube working in low voltage with changed period and big size. Acta Physica Sinica, 2012, 61(1): 014101. doi: 10.7498/aps.61.014101
    [13] Yi Hong-Xia, Xiao Liu, Liu Pu-Kun, Hao Bao-Liang, Li Fei, Li Guo-Chao. Optimization of slow wave structures of space traveling wave tube based on collectability of spent beam. Acta Physica Sinica, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [14] Peng Wei-Feng, Hu Yu-Lu, Yang Zhong-Hai, Li Jian-Qing, Lu Qi-Ru, Li Bin. A time-dependent theory for helix traveling wave tubes in beam-wave interaction. Acta Physica Sinica, 2010, 59(12): 8478-8483. doi: 10.7498/aps.59.8478
    [15] He Jun, Wei Yan-Yu, Gong Yu-Bin, Duan Zhao-Yun, Wang Wen-Xiang. A Ka-band folded double-ridged waveguide traveling-wave tube. Acta Physica Sinica, 2010, 59(4): 2843-2849. doi: 10.7498/aps.59.2843
    [16] He Jun, Wei Yan-Yu, Gong Yu-Bin, Duan Zhao-Yun, Lu Zhi-Gang, Wang Wen-Xiang. Linear theory of the beam-wave interaction in a ridge-loaded folded slow-wave structure. Acta Physica Sinica, 2010, 59(9): 6659-6665. doi: 10.7498/aps.59.6659
    [17] Gao Peng, Booske John H., Yang Zhong-Hai, Li Bin, Xu Li, He Jun, Gong Yu-Bin, Tian Zhong. Physics and simulation of terahertz folded waveguide traveling wave tube regenerative feedback oscillators. Acta Physica Sinica, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [18] Zhang Chang-Qing, Gong Yu-Bin, Wei Yan-Yu, Wang Wen-Xiang. Linear analysis of the dielectric-loaded folded waveguide traveling-wave tube amplifier. Acta Physica Sinica, 2010, 59(9): 6653-6658. doi: 10.7498/aps.59.6653
    [19] Hao Bao-Liang, Xiao Liu, Liu Pu-Kun, Li Guo-Chao, Jiang Yong, Yi Hong-Xia, Zhou Wei. Calculations of three-dimensional frequency-domain nonlinear beam-wave reaction for helix traveling wave tubes. Acta Physica Sinica, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [20] Li Jian-Qing, Mo Yuan-Long. General theory of nonlinear beam-wave interaction in traveling-wave tubes. Acta Physica Sinica, 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
Metrics
  • Abstract views:  6905
  • PDF Downloads:  508
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2014
  • Accepted Date:  20 July 2014
  • Published Online:  05 December 2014

/

返回文章
返回
Baidu
map