-
To improve the current and output power of the THz traveling wave tube (TWT), a fundamental mode multi-beam folded waveguide (FMMBFW) TWT scheme is proposed. Firstly, an equivalent circuit model FMMBFW for calculating the high-frequency characteristic is established and compared with numerical simulation. Secondly, the transmission characteristic of 60 periods FMMBFW is analyzed. Finally, the beam-wave interaction characteristic of 0.14 THz FMMBFW TWT is completed by numerical simulation and theoretical calculation. When the DC current is 12 mA and the applied voltage is 15.75 kV, the 3 dB bandwidth of 0.14 THz FMMBFW TWT is 25 GHz (128-153 GHz), the maximum gain is 33.61 dB and the maximum output power is 23 W. When the DC current is 30 mA and the voltage is 15.75 kV, the maximum gain is 38 dB and the maximum pulse output power is 63.1 W at 0.14 THz. Compared with the fundamental single-beam folded waveguide (FW) TWT under the same working condition, the 3 dB bandwidth is doubled, its output power is raised by a factor of 9.66 and the interaction efficiency is increased by 3.22 times. Based on the same gain, the length of FMMBFW TWT is just 52.6 mm while the length of single beam FW-TWT is 78.2 mm. The proposed method can increase effectively the current of FMMBFW TWT; and the interaction gain, efficiency, 3 dB bandwidth, output power can be improved. When the gain is the same, a shorted and compact FMMBFW TWT can be constucuted.
-
Keywords:
- fundamental mode /
- multi-beam /
- folded waveguide /
- THz traveling wave tube
[1] Peter H S 2002 IEEE Trans. Microwave. Theory Tech. 50 910
[2] John H B 2008 Phys. Plasmas 15 055502
[3] Shin Y M, Larry R B, Neville C L 2009 IEEE Trans. Electron Dev. 56 3196
[4] Shin Y M, Baig A, Larry R B, Tsai W C, Neville C L 2012 IEEE Trans. Electron Dev. 59 234
[5] Baig A, Gamzina D, Barchfeld R, Domier C, Barnett L R, Neville C L 2012 Phys. Plasmas 19 093110
[6] Field M, Griffith Z, Young A, Hillman C, Brar B 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p225
[7] Kory C L, Read M, Ives R L 2009 IEEE Trans. Electron Dev. 56 713
[8] Comfoltey E N, Shapiro M, Sirigiri J, Temkin R 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p127
[9] Tucek J C, Basten M A, Gallagher D A, Kreischer K E 2010 11th IEEE International Vacuum Electronics Conference Monterey, USA, May 18-20, 2010 p19
[10] Basten M A, Tucek J C, Gallagher D A 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p110
[11] Basten M A, Tucek J C, Gallagher D A, Kreischer K E 2013 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1
[12] Xu X, Wei Y Y, Shen F, Duan Z Y, Gong Y B, Yin H R, Wang W X 2011 IEEE Eletron. Dev. Lett. 32 1152
[13] Lai J Q, Wei Y Y, Liu Y, Huang M Z, Tang T, Wang W X, Gong Y B 2012 Chin. Phys. B 21 068403
[14] Liu L W, Wei Y Y, Wang S M, Hou Y, Yin H R, Zhao G Q, Duan Z Y, Xu J, Gong Y B, Wang W X, Yang M H 2013 Chin. Phys. B 22 108401
[15] Hu Q 2012 Acta Phys. Sin. 61 014101 (in Chinese) [胡权 2012 61 014101]
[16] Lai J Q, Wei Y Y, Xu X, Shen F, Liu Y, Liu Y, Huang M Z, Tang T, Gong Y B 2012 Acta Phys. Sin. 61 178501 (in Chinese) [赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬 2012 61 178501]
[17] Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese) [李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋 2013 62 120703]
[18] Feng J J, Cai J, Wu X P, Hu Y F, Cui Y D, Dong R T, Liu J K, Chen J, Zhang X Q 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p173
[19] Gong Y B, Yin H R, Yue L N, Lu Z G, Wei Y Y, Feng J J, Duan Z Y, Xu X 2011 IEEE Trans. Plasma Sci. 39 847
[20] Wang S J, Xue X Z, Wang Z C, Zhang S C, Guo J 2014 Chin. J. Vacuum Sci. Technol. 34 43 (in Chinese) [王书见, 薛谦忠, 王自成, 张世昌, 郭际2014真空科学与技术学报 34 43]
[21] Dohler G, Gagne D, Gallagher D, Moats R 1987 IEDM Tech. Dig. 33 485
[22] Ha H J, Jung S S, Park G S 1998 Int. J. Infrared Millim. Waves 19 1229
[23] Curnow H J 1965 IEEE Trans. Microw. Theory Tech. 13 671
[24] Carter R G, Liu S K 1986 IEE Proc. H, Microw. Antenn. Propag. 133 330
[25] Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685
[26] Marcuvitz L 1986 Waveguide Handbook (London: Peter Peregrinus) p365
-
[1] Peter H S 2002 IEEE Trans. Microwave. Theory Tech. 50 910
[2] John H B 2008 Phys. Plasmas 15 055502
[3] Shin Y M, Larry R B, Neville C L 2009 IEEE Trans. Electron Dev. 56 3196
[4] Shin Y M, Baig A, Larry R B, Tsai W C, Neville C L 2012 IEEE Trans. Electron Dev. 59 234
[5] Baig A, Gamzina D, Barchfeld R, Domier C, Barnett L R, Neville C L 2012 Phys. Plasmas 19 093110
[6] Field M, Griffith Z, Young A, Hillman C, Brar B 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p225
[7] Kory C L, Read M, Ives R L 2009 IEEE Trans. Electron Dev. 56 713
[8] Comfoltey E N, Shapiro M, Sirigiri J, Temkin R 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p127
[9] Tucek J C, Basten M A, Gallagher D A, Kreischer K E 2010 11th IEEE International Vacuum Electronics Conference Monterey, USA, May 18-20, 2010 p19
[10] Basten M A, Tucek J C, Gallagher D A 2009 10th IEEE International Vacuum Electronics Conference Rome, Italy, April 28-30, 2009 p110
[11] Basten M A, Tucek J C, Gallagher D A, Kreischer K E 2013 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1
[12] Xu X, Wei Y Y, Shen F, Duan Z Y, Gong Y B, Yin H R, Wang W X 2011 IEEE Eletron. Dev. Lett. 32 1152
[13] Lai J Q, Wei Y Y, Liu Y, Huang M Z, Tang T, Wang W X, Gong Y B 2012 Chin. Phys. B 21 068403
[14] Liu L W, Wei Y Y, Wang S M, Hou Y, Yin H R, Zhao G Q, Duan Z Y, Xu J, Gong Y B, Wang W X, Yang M H 2013 Chin. Phys. B 22 108401
[15] Hu Q 2012 Acta Phys. Sin. 61 014101 (in Chinese) [胡权 2012 61 014101]
[16] Lai J Q, Wei Y Y, Xu X, Shen F, Liu Y, Liu Y, Huang M Z, Tang T, Gong Y B 2012 Acta Phys. Sin. 61 178501 (in Chinese) [赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬 2012 61 178501]
[17] Li S, Wang J G, Tong C J, Wang G Q, Lu X C, Wang X F 2013 Acta Phys. Sin. 62 120703 (in Chinese) [李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋 2013 62 120703]
[18] Feng J J, Cai J, Wu X P, Hu Y F, Cui Y D, Dong R T, Liu J K, Chen J, Zhang X Q 2014 15th IEEE International Vacuum Electronics Conference Monterey, USA, April 22-24, 2014 p173
[19] Gong Y B, Yin H R, Yue L N, Lu Z G, Wei Y Y, Feng J J, Duan Z Y, Xu X 2011 IEEE Trans. Plasma Sci. 39 847
[20] Wang S J, Xue X Z, Wang Z C, Zhang S C, Guo J 2014 Chin. J. Vacuum Sci. Technol. 34 43 (in Chinese) [王书见, 薛谦忠, 王自成, 张世昌, 郭际2014真空科学与技术学报 34 43]
[21] Dohler G, Gagne D, Gallagher D, Moats R 1987 IEDM Tech. Dig. 33 485
[22] Ha H J, Jung S S, Park G S 1998 Int. J. Infrared Millim. Waves 19 1229
[23] Curnow H J 1965 IEEE Trans. Microw. Theory Tech. 13 671
[24] Carter R G, Liu S K 1986 IEE Proc. H, Microw. Antenn. Propag. 133 330
[25] Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O, Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685
[26] Marcuvitz L 1986 Waveguide Handbook (London: Peter Peregrinus) p365
Catalog
Metrics
- Abstract views: 6905
- PDF Downloads: 508
- Cited By: 0