-
Within the framework of the effective mass and adiabatic approximation, the electron transport through an InAs/InP cylindrical quantum wire is studied by using the transfer matrix method. The coherent and escape tunneling processes are analyzed in detail. Influence of external voltage and structure size on the dwell time and escape time are discussed theoretically. A resonant phenomenon of the dwell time for different electron longitudinal energies is observed. A peak value of dwell time appearing at some positions of the bound state increases as the energy level decreases. When a bias is applied on this system along the growth direction, all the peaks of the dwell time shift towards the lower energy and become higher with increasing bias. Furthermore, it can be seen that the asymmetry of structure affects the dwell time obviously. Different results are obtained with the increase of asymmetry of the structure, which can be attributed to a competition between the transmission probabilities through the whole structure and that through a single barrier. Besides, the coherent and escape tunneling processes are also investigated by using a finite-difference method between two asymmetrically coupled quantum disks. It is found that the coherent electron remains oscillating in the two coupled disks. When the right barrier thickness of the nanowire is decreased, a roughly exponential decay of the oscillation charge trapped in both quantum disks is observed. The oscillating period is not affected by the right barrier thickness. However, a great influence of the middle barrier on the oscillation period can be found easily.
-
Keywords:
- quantum wire /
- dwell time /
- resonant tunneling /
- escape
[1] Holonyak N, Kolbas R M, Dupuis Russell D, Dapkus P D 1980 IEEE J. Quantum Electron. 16 170
[2] Delagebeaudeuf D, Linh N T 1982 IEEE Trans. Electron. Dev. 29 955
[3] Sakaki H, Wagatsuma K, Hamasaki J, Satito S 1976 Thin Solid Films 36 497
[4] Barth J V, Costantini G, Kerm K 2005 Nature 437 671
[5] Wu Y, Xiang J, Yang C, Lu W, Lieber, Charles M 2004 Nature 430 61
[6] Miller B I, Shahar A, Koren U, Corvini P J 1989 Appl. Phys. Lett. 54 188
[7] Ohlsson B J, Björk M T, Magnusson M H, Deppert K, Samuelson L, Wallenberg L R 2001 Appl. Phys. Lett. 79 3335
[8] Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458
[9] Bakkers E P A M, Verheijen M A 2003 J. Am. Chem. Soc. 125 34
[10] Björk M T, Fuhrer A, Hansen A E, Larsson M W, Fröberg L E, Samuelson L 2005 Phys. Rev. B 72 201307
[11] Bryllert T, Wernersson L E, Fröberg L E, Samuelson L 2006 IEEE Electron Dev. Lett. 27 323
[12] Thelander C, Martensson T, Björk M T, Ohlsson B J, Larsson M W, Wallenberg L R, Samuelson L 2003 Appl. Phys. Lett. 83 2052
[13] Thelander C, Nilsson H A, Jensen L E, Samuelson L 2005 Nano Lett. 5 635
[14] Condon E U, Morse P M 1931 Rev. Mod. Phys. 3 43
[15] MacColl L A 1932 Phys. Rev. 40 621
[16] Leavens C R, Aers G C 1989 Phys. Rev. B 39 1202
[17] Wang R Q, Gong J, Wu J Y, Chen J 2013 Acta Phys. Sin. 62 087303 (in Chinese) [王瑞琴, 宫箭, 武建英, 陈军 2013 62 087303]
[18] Guo H, Diff K, Neofotistos G, Gunton J D 1988 Appl. Phys. Lett. 53 131
[19] Cruz H, Muga J G 1992 J. Appl. Phys. 72 5750
[20] Kim J U, Lee H H 1998 J. Appl. Phys. 84 907
[21] Kapteyn C M A, Heinrichsdorff F, Stier O, Heitz R, Grundmann M, Zakharov N D, Bimberg D, Werner P 1999 Phys. Rev. B 60 14265
[22] Matsusue T, Tsuchiya M, Schulman J N, Sakaki H 1990 Phys. Rev. B 42 5719
[23] Tsuchiya M, Matsusue T, Sakaki H 1987 Phys. Rev. Lett. 59 2356
[24] Li W, Guo Y 2006 Phys. Rev. B 73 205311
[25] Gong J, Liang X X, Ban S L 2007 J. Appl. Phys. 102 073718
[26] Gong Y Y, Guo Y 2009 J. Appl. Phys. 106 064317
[27] Larkin I A, Ujevic S, Avrutin E A 2009 J. Appl. Phys. 106 113701
[28] Tadić M, Peeters F M, Janssens K L 2002 Phys. Rev. B 65 165333
[29] Chi F, Xiao J L, Li S S 2004 Superlattices Microstruct. 35 59
[30] Yan Z W, Liang X X 2002 Phys. Rev. B 66 235324
[31] Smith F T 1960 Phys. Rev. 118 349
[32] Bttiker M 1983 Phys. Rev. B 27 6178
[33] Crank J, Nicolson P 1947 Proc. Camb. Phil. Soc. 43 50
-
[1] Holonyak N, Kolbas R M, Dupuis Russell D, Dapkus P D 1980 IEEE J. Quantum Electron. 16 170
[2] Delagebeaudeuf D, Linh N T 1982 IEEE Trans. Electron. Dev. 29 955
[3] Sakaki H, Wagatsuma K, Hamasaki J, Satito S 1976 Thin Solid Films 36 497
[4] Barth J V, Costantini G, Kerm K 2005 Nature 437 671
[5] Wu Y, Xiang J, Yang C, Lu W, Lieber, Charles M 2004 Nature 430 61
[6] Miller B I, Shahar A, Koren U, Corvini P J 1989 Appl. Phys. Lett. 54 188
[7] Ohlsson B J, Björk M T, Magnusson M H, Deppert K, Samuelson L, Wallenberg L R 2001 Appl. Phys. Lett. 79 3335
[8] Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458
[9] Bakkers E P A M, Verheijen M A 2003 J. Am. Chem. Soc. 125 34
[10] Björk M T, Fuhrer A, Hansen A E, Larsson M W, Fröberg L E, Samuelson L 2005 Phys. Rev. B 72 201307
[11] Bryllert T, Wernersson L E, Fröberg L E, Samuelson L 2006 IEEE Electron Dev. Lett. 27 323
[12] Thelander C, Martensson T, Björk M T, Ohlsson B J, Larsson M W, Wallenberg L R, Samuelson L 2003 Appl. Phys. Lett. 83 2052
[13] Thelander C, Nilsson H A, Jensen L E, Samuelson L 2005 Nano Lett. 5 635
[14] Condon E U, Morse P M 1931 Rev. Mod. Phys. 3 43
[15] MacColl L A 1932 Phys. Rev. 40 621
[16] Leavens C R, Aers G C 1989 Phys. Rev. B 39 1202
[17] Wang R Q, Gong J, Wu J Y, Chen J 2013 Acta Phys. Sin. 62 087303 (in Chinese) [王瑞琴, 宫箭, 武建英, 陈军 2013 62 087303]
[18] Guo H, Diff K, Neofotistos G, Gunton J D 1988 Appl. Phys. Lett. 53 131
[19] Cruz H, Muga J G 1992 J. Appl. Phys. 72 5750
[20] Kim J U, Lee H H 1998 J. Appl. Phys. 84 907
[21] Kapteyn C M A, Heinrichsdorff F, Stier O, Heitz R, Grundmann M, Zakharov N D, Bimberg D, Werner P 1999 Phys. Rev. B 60 14265
[22] Matsusue T, Tsuchiya M, Schulman J N, Sakaki H 1990 Phys. Rev. B 42 5719
[23] Tsuchiya M, Matsusue T, Sakaki H 1987 Phys. Rev. Lett. 59 2356
[24] Li W, Guo Y 2006 Phys. Rev. B 73 205311
[25] Gong J, Liang X X, Ban S L 2007 J. Appl. Phys. 102 073718
[26] Gong Y Y, Guo Y 2009 J. Appl. Phys. 106 064317
[27] Larkin I A, Ujevic S, Avrutin E A 2009 J. Appl. Phys. 106 113701
[28] Tadić M, Peeters F M, Janssens K L 2002 Phys. Rev. B 65 165333
[29] Chi F, Xiao J L, Li S S 2004 Superlattices Microstruct. 35 59
[30] Yan Z W, Liang X X 2002 Phys. Rev. B 66 235324
[31] Smith F T 1960 Phys. Rev. 118 349
[32] Bttiker M 1983 Phys. Rev. B 27 6178
[33] Crank J, Nicolson P 1947 Proc. Camb. Phil. Soc. 43 50
Catalog
Metrics
- Abstract views: 5570
- PDF Downloads: 286
- Cited By: 0