Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dwell time and escape tunneling in InAs/InP cylindrical quantum wire

Li Ming Chen Jun Gong Jian

Citation:

Dwell time and escape tunneling in InAs/InP cylindrical quantum wire

Li Ming, Chen Jun, Gong Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Within the framework of the effective mass and adiabatic approximation, the electron transport through an InAs/InP cylindrical quantum wire is studied by using the transfer matrix method. The coherent and escape tunneling processes are analyzed in detail. Influence of external voltage and structure size on the dwell time and escape time are discussed theoretically. A resonant phenomenon of the dwell time for different electron longitudinal energies is observed. A peak value of dwell time appearing at some positions of the bound state increases as the energy level decreases. When a bias is applied on this system along the growth direction, all the peaks of the dwell time shift towards the lower energy and become higher with increasing bias. Furthermore, it can be seen that the asymmetry of structure affects the dwell time obviously. Different results are obtained with the increase of asymmetry of the structure, which can be attributed to a competition between the transmission probabilities through the whole structure and that through a single barrier. Besides, the coherent and escape tunneling processes are also investigated by using a finite-difference method between two asymmetrically coupled quantum disks. It is found that the coherent electron remains oscillating in the two coupled disks. When the right barrier thickness of the nanowire is decreased, a roughly exponential decay of the oscillation charge trapped in both quantum disks is observed. The oscillating period is not affected by the right barrier thickness. However, a great influence of the middle barrier on the oscillation period can be found easily.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10847005) and the Talent Developing Foundation of Inner Mongolia, China.
    [1]

    Holonyak N, Kolbas R M, Dupuis Russell D, Dapkus P D 1980 IEEE J. Quantum Electron. 16 170

    [2]

    Delagebeaudeuf D, Linh N T 1982 IEEE Trans. Electron. Dev. 29 955

    [3]

    Sakaki H, Wagatsuma K, Hamasaki J, Satito S 1976 Thin Solid Films 36 497

    [4]

    Barth J V, Costantini G, Kerm K 2005 Nature 437 671

    [5]

    Wu Y, Xiang J, Yang C, Lu W, Lieber, Charles M 2004 Nature 430 61

    [6]

    Miller B I, Shahar A, Koren U, Corvini P J 1989 Appl. Phys. Lett. 54 188

    [7]

    Ohlsson B J, Björk M T, Magnusson M H, Deppert K, Samuelson L, Wallenberg L R 2001 Appl. Phys. Lett. 79 3335

    [8]

    Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458

    [9]

    Bakkers E P A M, Verheijen M A 2003 J. Am. Chem. Soc. 125 34

    [10]

    Björk M T, Fuhrer A, Hansen A E, Larsson M W, Fröberg L E, Samuelson L 2005 Phys. Rev. B 72 201307

    [11]

    Bryllert T, Wernersson L E, Fröberg L E, Samuelson L 2006 IEEE Electron Dev. Lett. 27 323

    [12]

    Thelander C, Martensson T, Björk M T, Ohlsson B J, Larsson M W, Wallenberg L R, Samuelson L 2003 Appl. Phys. Lett. 83 2052

    [13]

    Thelander C, Nilsson H A, Jensen L E, Samuelson L 2005 Nano Lett. 5 635

    [14]

    Condon E U, Morse P M 1931 Rev. Mod. Phys. 3 43

    [15]

    MacColl L A 1932 Phys. Rev. 40 621

    [16]

    Leavens C R, Aers G C 1989 Phys. Rev. B 39 1202

    [17]

    Wang R Q, Gong J, Wu J Y, Chen J 2013 Acta Phys. Sin. 62 087303 (in Chinese) [王瑞琴, 宫箭, 武建英, 陈军 2013 62 087303]

    [18]

    Guo H, Diff K, Neofotistos G, Gunton J D 1988 Appl. Phys. Lett. 53 131

    [19]

    Cruz H, Muga J G 1992 J. Appl. Phys. 72 5750

    [20]

    Kim J U, Lee H H 1998 J. Appl. Phys. 84 907

    [21]

    Kapteyn C M A, Heinrichsdorff F, Stier O, Heitz R, Grundmann M, Zakharov N D, Bimberg D, Werner P 1999 Phys. Rev. B 60 14265

    [22]

    Matsusue T, Tsuchiya M, Schulman J N, Sakaki H 1990 Phys. Rev. B 42 5719

    [23]

    Tsuchiya M, Matsusue T, Sakaki H 1987 Phys. Rev. Lett. 59 2356

    [24]

    Li W, Guo Y 2006 Phys. Rev. B 73 205311

    [25]

    Gong J, Liang X X, Ban S L 2007 J. Appl. Phys. 102 073718

    [26]

    Gong Y Y, Guo Y 2009 J. Appl. Phys. 106 064317

    [27]

    Larkin I A, Ujevic S, Avrutin E A 2009 J. Appl. Phys. 106 113701

    [28]

    Tadić M, Peeters F M, Janssens K L 2002 Phys. Rev. B 65 165333

    [29]

    Chi F, Xiao J L, Li S S 2004 Superlattices Microstruct. 35 59

    [30]

    Yan Z W, Liang X X 2002 Phys. Rev. B 66 235324

    [31]

    Smith F T 1960 Phys. Rev. 118 349

    [32]

    Bttiker M 1983 Phys. Rev. B 27 6178

    [33]

    Crank J, Nicolson P 1947 Proc. Camb. Phil. Soc. 43 50

  • [1]

    Holonyak N, Kolbas R M, Dupuis Russell D, Dapkus P D 1980 IEEE J. Quantum Electron. 16 170

    [2]

    Delagebeaudeuf D, Linh N T 1982 IEEE Trans. Electron. Dev. 29 955

    [3]

    Sakaki H, Wagatsuma K, Hamasaki J, Satito S 1976 Thin Solid Films 36 497

    [4]

    Barth J V, Costantini G, Kerm K 2005 Nature 437 671

    [5]

    Wu Y, Xiang J, Yang C, Lu W, Lieber, Charles M 2004 Nature 430 61

    [6]

    Miller B I, Shahar A, Koren U, Corvini P J 1989 Appl. Phys. Lett. 54 188

    [7]

    Ohlsson B J, Björk M T, Magnusson M H, Deppert K, Samuelson L, Wallenberg L R 2001 Appl. Phys. Lett. 79 3335

    [8]

    Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458

    [9]

    Bakkers E P A M, Verheijen M A 2003 J. Am. Chem. Soc. 125 34

    [10]

    Björk M T, Fuhrer A, Hansen A E, Larsson M W, Fröberg L E, Samuelson L 2005 Phys. Rev. B 72 201307

    [11]

    Bryllert T, Wernersson L E, Fröberg L E, Samuelson L 2006 IEEE Electron Dev. Lett. 27 323

    [12]

    Thelander C, Martensson T, Björk M T, Ohlsson B J, Larsson M W, Wallenberg L R, Samuelson L 2003 Appl. Phys. Lett. 83 2052

    [13]

    Thelander C, Nilsson H A, Jensen L E, Samuelson L 2005 Nano Lett. 5 635

    [14]

    Condon E U, Morse P M 1931 Rev. Mod. Phys. 3 43

    [15]

    MacColl L A 1932 Phys. Rev. 40 621

    [16]

    Leavens C R, Aers G C 1989 Phys. Rev. B 39 1202

    [17]

    Wang R Q, Gong J, Wu J Y, Chen J 2013 Acta Phys. Sin. 62 087303 (in Chinese) [王瑞琴, 宫箭, 武建英, 陈军 2013 62 087303]

    [18]

    Guo H, Diff K, Neofotistos G, Gunton J D 1988 Appl. Phys. Lett. 53 131

    [19]

    Cruz H, Muga J G 1992 J. Appl. Phys. 72 5750

    [20]

    Kim J U, Lee H H 1998 J. Appl. Phys. 84 907

    [21]

    Kapteyn C M A, Heinrichsdorff F, Stier O, Heitz R, Grundmann M, Zakharov N D, Bimberg D, Werner P 1999 Phys. Rev. B 60 14265

    [22]

    Matsusue T, Tsuchiya M, Schulman J N, Sakaki H 1990 Phys. Rev. B 42 5719

    [23]

    Tsuchiya M, Matsusue T, Sakaki H 1987 Phys. Rev. Lett. 59 2356

    [24]

    Li W, Guo Y 2006 Phys. Rev. B 73 205311

    [25]

    Gong J, Liang X X, Ban S L 2007 J. Appl. Phys. 102 073718

    [26]

    Gong Y Y, Guo Y 2009 J. Appl. Phys. 106 064317

    [27]

    Larkin I A, Ujevic S, Avrutin E A 2009 J. Appl. Phys. 106 113701

    [28]

    Tadić M, Peeters F M, Janssens K L 2002 Phys. Rev. B 65 165333

    [29]

    Chi F, Xiao J L, Li S S 2004 Superlattices Microstruct. 35 59

    [30]

    Yan Z W, Liang X X 2002 Phys. Rev. B 66 235324

    [31]

    Smith F T 1960 Phys. Rev. 118 349

    [32]

    Bttiker M 1983 Phys. Rev. B 27 6178

    [33]

    Crank J, Nicolson P 1947 Proc. Camb. Phil. Soc. 43 50

  • [1] Wen Li, Lu Mao-Wang, Chen Jia-Li, Chen Sai-Yan, Cao Xue-Li, Zhang An-Qi. Transmission time and spin polarization for electron in magnetically confined semiconducotr nanostructure modulated by spin-orbit coupling. Acta Physica Sinica, 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] Wu Hai-Bin, Liu Ying-Di, Liu Yan-Jun, Li Jin-Hua, Liu Jian-Jun. Chiral Majorana fermions resonance exchange moudulated by quantum dot coupling strength. Acta Physica Sinica, 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [3] Zeng Shao-Long, Li Ling, Xie Zheng-Wei. Tunneling times in double spin-filter junctions. Acta Physica Sinica, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [4] Zhao Jing-Long, Dong Zheng-Chao, Zhong Chong-Gui, Li Cheng-Di. Tunneling spectra for quantum wire/iron-based superconductor junction. Acta Physica Sinica, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [5] An Xing-Tao, Diao Shu-Meng. Transport properties in a gate controlled silicene quantum wire. Acta Physica Sinica, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [6] Yang Xin-Rong, Xu Bo, Zhao Guo-Qing, Shen Xiao-Zhi, Shi Shu-Hui, Li Jie, Wang Zhan-Guo. Investigation of the temperature sensitivity of the long-wavelength InP-based laser. Acta Physica Sinica, 2012, 61(21): 216802. doi: 10.7498/aps.61.216802
    [7] Wang Xiu-Ping, Yang Xiao-Hong, Han Qin, Ju Yan-Ling, Du Yun, Zhu Bin, Wang Jie, Ni Hai-Qiao, He Ji-Fang, Wang Guo-Wei, Niu Zhi-Chuan. Preparation and photoluminescence study of patterned substrate quantum wires. Acta Physica Sinica, 2011, 60(2): 020703. doi: 10.7498/aps.60.020703
    [8] Liu Jian, Zhang Hong, Zhang Chun-Yuan, Zhang Hui-Liang. Charged excitons in parabolic quantum-well wires under magnetic filed. Acta Physica Sinica, 2011, 60(7): 077301. doi: 10.7498/aps.60.077301
    [9] Li Qiao-Hua, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Calculation of the electronic transmission spectra of a molecular device using a simplified model. Acta Physica Sinica, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [10] Tang Nai-Yun. Spin polarized current transport and charge polarization effect in ferromagnetic GaMnN resonant tunneling diode. Acta Physica Sinica, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [11] Li Hong, Guo Hua-Zhong, Lu Chuan, Li Ling, Gao Jie. Electronic properties of quantum wires in surface-acoustic-wave based single-electron transport devices. Acta Physica Sinica, 2008, 57(9): 5863-5868. doi: 10.7498/aps.57.5863
    [12] Li Xiao-Wei. Tunneling conductance in quantum-wire/insulator/p wave superconductor junction. Acta Physica Sinica, 2007, 56(10): 6033-6037. doi: 10.7498/aps.56.6033
    [13] Xiao Xian-Bo, Li Xiao-Mao, Zhou Guang-Hui. Spin polarized transport properties for quantum wire irradiated by THz electromagnetic wave. Acta Physica Sinica, 2007, 56(3): 1649-1654. doi: 10.7498/aps.56.1649
    [14] Sun Yu-Hang, Li Fu-Li. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [15] Li Liang-Xin, Hu Yong-Hua. Intersubband and intraband transitions of self-assembled quantum wires for the infrared detectors. Acta Physica Sinica, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [16] Hu Zhen-Hua, Huang De-Xiu. Study of luminescence due to delocalized exciton recombination in asymmetric-coupled quantum well structure based on Ξ-type configuration. Acta Physica Sinica, 2004, 53(4): 1195-1200. doi: 10.7498/aps.53.1195
    [17] Zhu Li     , Zheng Hou-Zhi, Tan Ping-Heng, Zhou Xia, Ji Yang, Yang Fu-Hua, Li Gui-Rong, Zeng Yu-Xin. Influence of level filling on optical properties of quantum well. Acta Physica Sinica, 2004, 53(12): 4334-4340. doi: 10.7498/aps.53.4334
    [18] Yang Mou, Zhou Guang-Hui, Xiao Xian-Bo. Nanoelectromechanics in a quantum wire irradiated by a THz electromagnetic field. Acta Physica Sinica, 2003, 52(8): 2037-2040. doi: 10.7498/aps.52.2037
    [19] Zhao Ji-Gang, Shao Bin, Wang Tai-Hong. . Acta Physica Sinica, 2002, 51(6): 1355-1359. doi: 10.7498/aps.51.1355
    [20] WANG CHUAN-KUI, JIANG ZHAO-TAN. QUANTUM BOUND STATES OF ONE KIND OF BENT QUANTUM WIRES. Acta Physica Sinica, 2000, 49(8): 1574-1579. doi: 10.7498/aps.49.1574
Metrics
  • Abstract views:  5569
  • PDF Downloads:  286
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2014
  • Accepted Date:  04 August 2014
  • Published Online:  05 December 2014

/

返回文章
返回
Baidu
map