-
To achieve nanoscale infrared photodetector electrodes with low resistivity, ion-implantation is used to implant high dose of As ion into high-resistivity silicon, and followed by rapid thermal annealing (RTA). A 200 nm thick Si:As layer with resistivity of 10-4 Ω · cm is obtained. Characterization by atomic force microscopy shows that the surfaces of the ion-implanted samples are smooth with a root-mean-square (RMS) coarseness of 0.5 nm. Although introduction of As ions destroys the lattice structure of crystalline silicon and causes a plenty of defects, proper annealing can restore the crystal lattice, as evidenced by the HRTEM observation of the annealed sample prepared by using focused ion beam (FIB) technology. Besides, the measurements of hall effect and spreading resistance indicate that the Si:As layer has good electrical properties including high carrier concentrations 2.5 × 1020 cm-3, high electron mobilities 40 cm2/V · s, and high electrical conductivities. The low resistivity Si:As material obtained is suitable to be used as the back electrodes of silicon-based optoelectronic devices.
-
Keywords:
- silicon electrode materials /
- ion implantation /
- low resistivity /
- microstructure
[1] Jiang T, Cheng X A, Xu Z J, Lu Q S 2013 Acta Phys. Sin. 62 097303 (in Chinese)[江天, 程湘爱, 许中杰, 陆启生 2013 62 097303]
[2] Wei X D, Cai C F, Zhang B P, Hu L, Wu H Z, Zhang Y G, Feng J W, Lin J M, Lin C, Fang W Z, Dai N 2011 J. Infrared Millim. Waves 30 293 (in Chinese) [魏晓东, 蔡春峰, 张兵坡, 胡炼, 吴惠桢, 张永刚, 冯靖文, 林加木, 林春, 方维政, 戴宁 2011 红外与毫米波学报 30 293]
[3] Meng Q R, Yu Q, Zhang L W, Lv Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese)[孟庆端, 余倩, 张立文, 吕衍秋 2012 61 226103]
[4] Rogalski A 2003 Prog. Quant. Electron 27 59
[5] Rogalski A 2011 Infrared Phys. Technol. 54 136
[6] Rogalski A 2007 Infrared Phys. Technol. 50 240
[7] Patrashin M, Hiromoto N, Fouks B, Maslov I A, Ledenev V M 1999 J. Appl. Phys. 86 3797
[8] Cardozo B L, Reichertz L A, Beeman J W, Haller E E 2005 Infrared Phys. Technol. 46 400
[9] Szmulowicz F, Madarasz F L 1987 J. Appl. Phys. 62 2533
[10] Guo H, Wang Y H, Zhang Y M, Qiao D Y, Zhang Y M 2009 Chin. Phys. B 18 4470
[11] Guo H, Zhang Y M, Qiao D Y, Sun L, Zhang Y M 2007 Chin. Phys. B 16 1753
[12] Nylandsted Larsen A, O'Raifeartaigh C, Barklie R C, Holm B, Priolo F, Franzo G, Lulli G, Bianconi M, Nipoti R, Lindner J K N, Mesli A, Grob J J, Cristiano F, Hemment P L F 1997 J. Appl. Phys. 81 2208
[13] Lietoila A, Gibbons J F, Magee T J, Peng J, Hong J D 1979 Appl. Phys. Lett. 35 532
[14] Qin X F, Liang Y, Wang F X, Li S, Fu G, Ji Y J 2011 Acta Phys. Sin. 60 066101 (in Chinese)[秦希峰, 梁毅, 王凤翔, 李双, 付刚, 季艳菊 2011 60 066101]
[15] Xu D Q, Zhang Y M, Lou Y L, Tong J 2014 Acta Phys. Sin. 63 047501 (in Chinese)[徐大庆, 张义门, 娄永乐, 童军 2014 63 047501]
[16] Fulks R T 1981 Appl. Phys. Lett. 39 604
[17] Pandey K, Erbil A, Cargill G, Boehme R, Vanderbilt D 1988 Phys. Rev. Lett. 61 1282
[18] Xu R, Jia G, Liu C L 2014 Acta Phys. Sin. 63 078501 (in Chinese)[许蓉, 贾光, 刘昌龙 2014 63 078501]
[19] Parisini A, Bourret A, Armigliato A, Servidori M, Solmi S, Fabbri R, Regnard J R, Allain J L 1990 J. Appl. Phys. 67 2320
[20] Lindhard J, Scharff M, Schidtt H E 1963 Mat. Fys. Medd. Dan. Vid. Selsk. 33 14
[21] Kevin M, Klein C P, Al F Tasch 1992 IEEE T. Electron Dev. 39 1614
[22] Suzuki K 2009 FUJITSU Sci. Tech. J. 46 307
[23] Solmi S, Nobili D, Shao J 2000 J. Appl. Phys. 87 658
[24] Nobili D, Celotti G, Solmi S 1983 J. EIectrochem. Soc.: Solid-State Science and Technology 130 922
[25] Nobili D, Solmi S, Parisini A, Derdour M, Armigliato A, Moro L 1994 Phys. Rev. B 49 2477
-
[1] Jiang T, Cheng X A, Xu Z J, Lu Q S 2013 Acta Phys. Sin. 62 097303 (in Chinese)[江天, 程湘爱, 许中杰, 陆启生 2013 62 097303]
[2] Wei X D, Cai C F, Zhang B P, Hu L, Wu H Z, Zhang Y G, Feng J W, Lin J M, Lin C, Fang W Z, Dai N 2011 J. Infrared Millim. Waves 30 293 (in Chinese) [魏晓东, 蔡春峰, 张兵坡, 胡炼, 吴惠桢, 张永刚, 冯靖文, 林加木, 林春, 方维政, 戴宁 2011 红外与毫米波学报 30 293]
[3] Meng Q R, Yu Q, Zhang L W, Lv Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese)[孟庆端, 余倩, 张立文, 吕衍秋 2012 61 226103]
[4] Rogalski A 2003 Prog. Quant. Electron 27 59
[5] Rogalski A 2011 Infrared Phys. Technol. 54 136
[6] Rogalski A 2007 Infrared Phys. Technol. 50 240
[7] Patrashin M, Hiromoto N, Fouks B, Maslov I A, Ledenev V M 1999 J. Appl. Phys. 86 3797
[8] Cardozo B L, Reichertz L A, Beeman J W, Haller E E 2005 Infrared Phys. Technol. 46 400
[9] Szmulowicz F, Madarasz F L 1987 J. Appl. Phys. 62 2533
[10] Guo H, Wang Y H, Zhang Y M, Qiao D Y, Zhang Y M 2009 Chin. Phys. B 18 4470
[11] Guo H, Zhang Y M, Qiao D Y, Sun L, Zhang Y M 2007 Chin. Phys. B 16 1753
[12] Nylandsted Larsen A, O'Raifeartaigh C, Barklie R C, Holm B, Priolo F, Franzo G, Lulli G, Bianconi M, Nipoti R, Lindner J K N, Mesli A, Grob J J, Cristiano F, Hemment P L F 1997 J. Appl. Phys. 81 2208
[13] Lietoila A, Gibbons J F, Magee T J, Peng J, Hong J D 1979 Appl. Phys. Lett. 35 532
[14] Qin X F, Liang Y, Wang F X, Li S, Fu G, Ji Y J 2011 Acta Phys. Sin. 60 066101 (in Chinese)[秦希峰, 梁毅, 王凤翔, 李双, 付刚, 季艳菊 2011 60 066101]
[15] Xu D Q, Zhang Y M, Lou Y L, Tong J 2014 Acta Phys. Sin. 63 047501 (in Chinese)[徐大庆, 张义门, 娄永乐, 童军 2014 63 047501]
[16] Fulks R T 1981 Appl. Phys. Lett. 39 604
[17] Pandey K, Erbil A, Cargill G, Boehme R, Vanderbilt D 1988 Phys. Rev. Lett. 61 1282
[18] Xu R, Jia G, Liu C L 2014 Acta Phys. Sin. 63 078501 (in Chinese)[许蓉, 贾光, 刘昌龙 2014 63 078501]
[19] Parisini A, Bourret A, Armigliato A, Servidori M, Solmi S, Fabbri R, Regnard J R, Allain J L 1990 J. Appl. Phys. 67 2320
[20] Lindhard J, Scharff M, Schidtt H E 1963 Mat. Fys. Medd. Dan. Vid. Selsk. 33 14
[21] Kevin M, Klein C P, Al F Tasch 1992 IEEE T. Electron Dev. 39 1614
[22] Suzuki K 2009 FUJITSU Sci. Tech. J. 46 307
[23] Solmi S, Nobili D, Shao J 2000 J. Appl. Phys. 87 658
[24] Nobili D, Celotti G, Solmi S 1983 J. EIectrochem. Soc.: Solid-State Science and Technology 130 922
[25] Nobili D, Solmi S, Parisini A, Derdour M, Armigliato A, Moro L 1994 Phys. Rev. B 49 2477
Catalog
Metrics
- Abstract views: 7101
- PDF Downloads: 537
- Cited By: 0