Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Active tunable metamaterial transmission line based on lumped elements and negative differencial devices

Si Li-Ming Hou Ji-Xuan Liu Yong Lü Xin

Citation:

Active tunable metamaterial transmission line based on lumped elements and negative differencial devices

Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To overcome the defects of metamaterials, such as high dispersion, the high loss, and the problem of homogenization, we design and implement an active tunable metamaterial transmission line, and measure the characteristics of active tunable metamaterial transmission line that is based on lumped elements and negative differential devices. From the measured results, it exhibits not only electronically tunable scattering parameters (electro-control tunable characteristic) but also the negative attenuation constant (the propagation amplification) in the left-handed frequency band (active characteristic).
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA8123012), the National Natural Science Foundation of China (Grant Nos. 61307128, 61275107), the Specialized Research Fundation for the Doctoral Program of Higher Education of China (Grant No. 20131101120027), and the Basic Research Foundation of Beijing Institute of Technology, China (Grant No. 20120542015).
    [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 48

    [2]

    Cui T J, Smith D R, Liu R P 2010 Metamaterials: Theory, Design and Applications (New York: Springer)

    [3]

    Caloz C, Itoh T 2005 Electromagnetic Metamaterials: Transmission Line Theory an Microwave Applications (New York: John Wiley & Sons)

    [4]

    Chen H Y, Chan C T, Sheng P 2010 Nat. Mater. 9 387

    [5]

    Hao J M, Wang J, Liu X L, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104

    [6]

    Tang M C, Xiao S Q, Wang D, Ge G D, Bai Y Y, Zhang J R, Wang B Z 2011 Chin. Phys. B 20 067805

    [7]

    Chen W Y T, Han P Y, Kuo M L, Lin S Y, Zhang X C 2012 Acta Phys. Sin. 61 088401 (in Chinese) [陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成 2012 61 088401]

    [8]

    Su Y Y, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 084102 (in Chinese) [苏妍妍, 龚伯仪, 赵晓鹏 2012 61 084102]

    [9]

    Si L M, Zhu W, Sun H J 2013 IEEE Antenn. Wirel. Propag. Lett. 12 305

    [10]

    Si L M, Liu Y, Lu H, Sun H J, L X, Zhu W 2013 IEEE Photon. Technol. Lett. 25 519

    [11]

    Liu Y, Si L M, Zhu S H, Xin H 2011 Electron. Lett. 47 80

    [12]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [13]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

    [14]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [15]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [16]

    Caloz C, Itoh T 2002 IEEE International Symposium on Antennas and Propagation Digest San Antonio, USA, 2002 p412

    [17]

    Iyer A K, Eleftheriades G V 2002 IEEE International Symposium on Microwave Theory and Techniques Digest Seattle, USA, p1067

    [18]

    Grbic A, Eleftheriades G V 2002 USNC/URSI National Radio Science Meeting San Antonio, USA, p340

    [19]

    Oliner A A 2002 USNC/URSI National Radio Science Meeting San Antonio, USA, p41

    [20]

    Sanada A, Caloz C, Itoh T 2004 IEEE Microw. Wirel. Compon. Lett. 14 68

    [21]

    Casares-Miranda F P, Camacho-Penalosa C, Caloz C 2006 IEEE Trans. Antenn. Propag. 54 2292

    [22]

    Powell D A, Shadrivov I V, Kivshar Y S 2009 Appl. Phys. Lett. 94 084105

    [23]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735

    [24]

    Si L M, Jiang T, Chang K, Chen T C, L X, Ran L X, Xin H 2011 Materials 4 73

    [25]

    Jiang T, Chang K, Si L M, Ran L X, Xin H 2011 Phys. Rev. Lett. 107 205503

    [26]

    Si L M, Sun H, L X 2011 Microw. Opt. Techn. Lett. 53 515

    [27]

    Grbic A, Eleftheriades G V 2002 J. Appl. Phys. 92 5930

    [28]

    Eleftheriades G V, Lyer A K, Kremer P C 2002 IEEE Trans. Microw. Theory. Tech. 50 2702

    [29]

    He L, Zhang Y W, Li H Q, Chen H, Zhang D K 2005 Acta Phys. Sin. 54 768 (in Chinese) [赫丽, 张冶文, 李宏强, 陈鸿, 张东科 2005 54 768]

    [30]

    Zhu W R, Rukhlenko I D, Si L M, Premaratne M 2013 Appl. Phys. Lett. 102 121911

    [31]

    Zhao J, Cheng Q, Chen J, Qi M Q, Jiang W X, Cui T J 2013 New J. Phys. 15 043049

    [32]

    Si L M, Hou J X, Liu Y, L X 2013 Acta Phys. Sin. 62 037806 (in Chinese) [司黎明, 侯吉旋, 刘埇, 吕昕 2013 62 037806]

  • [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 48

    [2]

    Cui T J, Smith D R, Liu R P 2010 Metamaterials: Theory, Design and Applications (New York: Springer)

    [3]

    Caloz C, Itoh T 2005 Electromagnetic Metamaterials: Transmission Line Theory an Microwave Applications (New York: John Wiley & Sons)

    [4]

    Chen H Y, Chan C T, Sheng P 2010 Nat. Mater. 9 387

    [5]

    Hao J M, Wang J, Liu X L, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104

    [6]

    Tang M C, Xiao S Q, Wang D, Ge G D, Bai Y Y, Zhang J R, Wang B Z 2011 Chin. Phys. B 20 067805

    [7]

    Chen W Y T, Han P Y, Kuo M L, Lin S Y, Zhang X C 2012 Acta Phys. Sin. 61 088401 (in Chinese) [陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成 2012 61 088401]

    [8]

    Su Y Y, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 084102 (in Chinese) [苏妍妍, 龚伯仪, 赵晓鹏 2012 61 084102]

    [9]

    Si L M, Zhu W, Sun H J 2013 IEEE Antenn. Wirel. Propag. Lett. 12 305

    [10]

    Si L M, Liu Y, Lu H, Sun H J, L X, Zhu W 2013 IEEE Photon. Technol. Lett. 25 519

    [11]

    Liu Y, Si L M, Zhu S H, Xin H 2011 Electron. Lett. 47 80

    [12]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [13]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

    [14]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [15]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [16]

    Caloz C, Itoh T 2002 IEEE International Symposium on Antennas and Propagation Digest San Antonio, USA, 2002 p412

    [17]

    Iyer A K, Eleftheriades G V 2002 IEEE International Symposium on Microwave Theory and Techniques Digest Seattle, USA, p1067

    [18]

    Grbic A, Eleftheriades G V 2002 USNC/URSI National Radio Science Meeting San Antonio, USA, p340

    [19]

    Oliner A A 2002 USNC/URSI National Radio Science Meeting San Antonio, USA, p41

    [20]

    Sanada A, Caloz C, Itoh T 2004 IEEE Microw. Wirel. Compon. Lett. 14 68

    [21]

    Casares-Miranda F P, Camacho-Penalosa C, Caloz C 2006 IEEE Trans. Antenn. Propag. 54 2292

    [22]

    Powell D A, Shadrivov I V, Kivshar Y S 2009 Appl. Phys. Lett. 94 084105

    [23]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735

    [24]

    Si L M, Jiang T, Chang K, Chen T C, L X, Ran L X, Xin H 2011 Materials 4 73

    [25]

    Jiang T, Chang K, Si L M, Ran L X, Xin H 2011 Phys. Rev. Lett. 107 205503

    [26]

    Si L M, Sun H, L X 2011 Microw. Opt. Techn. Lett. 53 515

    [27]

    Grbic A, Eleftheriades G V 2002 J. Appl. Phys. 92 5930

    [28]

    Eleftheriades G V, Lyer A K, Kremer P C 2002 IEEE Trans. Microw. Theory. Tech. 50 2702

    [29]

    He L, Zhang Y W, Li H Q, Chen H, Zhang D K 2005 Acta Phys. Sin. 54 768 (in Chinese) [赫丽, 张冶文, 李宏强, 陈鸿, 张东科 2005 54 768]

    [30]

    Zhu W R, Rukhlenko I D, Si L M, Premaratne M 2013 Appl. Phys. Lett. 102 121911

    [31]

    Zhao J, Cheng Q, Chen J, Qi M Q, Jiang W X, Cui T J 2013 New J. Phys. 15 043049

    [32]

    Si L M, Hou J X, Liu Y, L X 2013 Acta Phys. Sin. 62 037806 (in Chinese) [司黎明, 侯吉旋, 刘埇, 吕昕 2013 62 037806]

  • [1] Du An-Tian, Liu Ruo-Tao, Cao Chun-Fang, Han Shi-Xian, Wang Hai-Long, Gong Qian. Improving structure design of active region of InAs quantum dots by using InAs/GaAs digital alloy superlattice. Acta Physica Sinica, 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [2] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [3] Xu Qiang-Rong, Zhu Yang, Lin Kang, Shen Cheng, Lu Tian-Jian. Low-frequency sound insulation performance of novel membrane acoustic metamaterial with dynamic negative stiffness. Acta Physica Sinica, 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [4] Tao Meng-Meng, Tao Bo, Ye Jing-Feng, Shen Yan-Long, Huang Ke, Ye Xi-Sheng, Zhao Jun. Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application. Acta Physica Sinica, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [5] Zhai Shi-Long, Wang Yuan-Bo, Zhao Xiao-Peng. A kind of tunable acoustic metamaterial for low frequency absorption. Acta Physica Sinica, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [6] Chen Jun, Yang Mao-Sheng, Li Ya-Di, Cheng Deng-Ke, Guo Geng-Liang, Jiang Lin, Zhang Hai-Ting, Song Xiao-Xian, Ye Yun-Xia, Ren Yun-Peng, Ren Xu-Dong, Zhang Ya-Ting, Yao Jian-Quan. Tunable terahertz wave broadband absorber based on metamaterial. Acta Physica Sinica, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [7] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [8] Liu Song, Luo Chun-Rong, Zhai Shi-Long, Chen Huai-Jun, Zhao Xiao-Peng. Inverse Doppler effect of acoustic metamaterial with negative mass density. Acta Physica Sinica, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [9] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [10] Wang Xiu-Zhi, Gao Jin-Song, Xu Nian-Xi. Characteristics of polarization separation of frequency selective surface by lumped inductors and capacitors. Acta Physica Sinica, 2013, 62(14): 147307. doi: 10.7498/aps.62.147307
    [11] Wang Xiu-Zhi, Gao Jin-Song, Xu Nian-Xi. Quick analysis of miniaturized-element frequency selective surface that loaded with lumped elements by using an equivalent circuit model. Acta Physica Sinica, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [12] Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin. Extraction of effective constitutive parameters of active terahertz metamaterial with negative differential resistance carbon nanotubes. Acta Physica Sinica, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [13] Wang Ying, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [14] Liu Ran, Shi Jin-Hui, Plum Eric, Fedotov Vassili, Zheludev Nikolay. Tuning Fano resonances in a planar metamaterial. Acta Physica Sinica, 2012, 61(15): 154101. doi: 10.7498/aps.61.154101
    [15] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Bai Peng, Peng Wei-Dong, Lin Bao-Qin. Design of a wide-band metamaterial absorber based on loaded magnetic resonators. Acta Physica Sinica, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [16] Fan Jing, Cai Guang-Yu. Tunability in metamaterials with mechanical rotation. Acta Physica Sinica, 2010, 59(12): 8574-8578. doi: 10.7498/aps.59.8574
    [17] Tang Shi-Wei, Zhu Wei-Ren, Zhao Xiao-Peng. Multiband negative index metamaterials at optical frequencies. Acta Physica Sinica, 2009, 58(5): 3220-3223. doi: 10.7498/aps.58.3220
    [18] Wang Lian-Sheng, Luo Chun-Rong, Huang Yong, Zhao Xiao-Peng. Electrically tunable negative permeability metamaterials based on electrorheological fluids. Acta Physica Sinica, 2008, 57(6): 3571-3577. doi: 10.7498/aps.57.3571
    [19] Hou Mi-Na, Liu Hong-Jun, Zhao Wei, Wang Yi-Shan. Tunable parametric fluorescence using a single crystal. Acta Physica Sinica, 2007, 56(10): 5872-5877. doi: 10.7498/aps.56.5872
    [20] Zhang Dong-Ke, Zhang Ye-Wen, He Li, Li Hong-Qiang, Chen Hong. Experimental verification of the characteristic of one-dimensional metamaterials by use of lumped-elements L-C. Acta Physica Sinica, 2005, 54(2): 768-772. doi: 10.7498/aps.54.768
Metrics
  • Abstract views:  6839
  • PDF Downloads:  1545
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2013
  • Accepted Date:  14 October 2013
  • Published Online:  05 January 2014

/

返回文章
返回
Baidu
map