-
A novel all-optical format conversion scheme based on dual-pump four-wave-mixing (DP-FWM) in dispersion-flattened highly nonlinear photonic crystal fiber (DF-HNL-PCF) is proposed and experimentally demonstrated. The original non-return-to-zero (NRZ) format is converted into double return-to-zero (RZ) format by injecting NRZ signal and double synchronized clock signals into the DF-HNL-PCF. The DP-FWM effect generates two sideband components, which carry the same data information as the original NRZ signal with RZ format. The wavelength tunability and dynamic range of format converter are investigated. The optimum extinct ratio and Q factor of converted signals are 15 dB and 5.4, respectively. The advantages of this scheme are that the each wavelength of double channel multicasting signals is dependent and flexible. Moreover, the system is transparent to bit rate as well as modulation format, and achieves all-optical wavelength conversion and wavelength multicasting.
-
Keywords:
- format conversion /
- four-wave mixing /
- dual-pump /
- photonic crystal fiber
[1] Willner A E, Yilmaz O F 2010 IEEE J. Select. Top. Quantum. Electron. 16 320
[2] Hayashi M, Tanaka H, Ohara K, Otani T 2002 J. Lightwave Technol. 20 236
[3] Kwok C H, Lin C 2006 IEEE J. Select. Top. Quantum Electron. 12 451
[4] Norte D, Willner A E 1995 IEEE Photon Technol. Lett. 7 1354
[5] Chou H F, Bowers J E 2007 IEEE J. Select. Top. Quantum Electron. 13 58
[6] Huo L, Dong Y, Lou C Y, Gao Y Z 2003 IEEE Photon. Technol. Lett. 15 981
[7] Zhao X F, Lou C Y, Zhou H B, Lu D, Huo L 2010 Opt. Express 18 23657
[8] Yu Y, Zhang X L, Rosas-Fernández J B, Huang D X 2009 Opt. Express 17 3964
[9] Chow C W, Wong C S, Tsang H K 2002 Opt. Commun. 209 329
[10] Lin G, Yu K, Chang Y 2006 Opt. Lett. 31 1376
[11] Chen Z X, Wu J, Xu K, Lin J T 2007 Opt. Eng. 46 080502
[12] Wang J, Sun J Q, Sun Q Z 2007 Opt. Lett. 32 2462
[13] Wang D L, Sun J Q, Wang J 2008 Acta Phys. Sin. 57 252 (in Chinese) [汪大林, 孙军强, 王健 2008 57 252]
[14] Wang J, Sun J, Zhang X, Huang D 2009 IEEE J. Quantum Electron. 45 195
[15] Zhou L, Chen H, Poon A W 2008 IEEE J. Lightwave Technol. 26 1950
[16] Ye T, Yan C, Lu Y, Liu F, Su Y 2008 Opt. Express 16 15325
[17] Yan C, Ye T, Su Y 2009 Opt. Lett. 34 58
[18] Kuo B P P, Chui P C 2008 IEEE J. Lightwave Technol. 26 3770
[19] Yin L, Yan Y, Zhou Y, Wu J, Lin J 2006 Chin. Opt. Lett. 4 4
[20] Noel L, Shan X, Ellis A D 1995 IEEE Electon. Lett. 31 277
[21] Xie Y Y, Zhang J G, Wang W Q 2008 J. Modern Opt. 55 3021
[22] Willer A E, Jeffrey B D 2010 IEEE J. Select. Top. Quantum Electron. 16 234
[23] Hui Z Q 2011 Laser Phys. 21 1219
[24] Yang X, Mishra A K, Manning R J, Giller R 2007 IEEE Electon. Lett. 43 469
[25] Bill P P K, Chui P C, Wong K K Y 2008 J. Lightwave Technol. 26 3770
[26] Dong J J, Zhang X L, Wang F, Yu Y 2008 IEEE Electon. Lett. 44 763
[27] Yu C, Yan L S, Luo T, Wang Y 2005 IEEE Photon. Technol. Lett. 17 636
[28] Yan L S, Yi A L, Pan W, Luo B, Ye J 2010 Opt. Express 18 21404
[29] Hui Z Q, Zhang J G 2012 Acta Phys. Sin. 61 014217 (in Chinese) [惠战强, 张建国 2012 61 014217]
[30] Apiratikul P, Astar W, Carter G M 2010 IEEE Photon. Technol. Lett. 22 872
[31] Russell P 2003 Science 299 358
[32] Zsigri B, Peucheret C 2006 IEEE Photon. Technol. Lett. 18 2290
[33] Fok M P, Shu C 2007 IEEE Photon. Technol. Lett. 19 1166
[34] Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B 2004 Acta Phys. Sin. 53 4243 (in Chinese) [胡明列, 王清月, 栗岩峰, 王专, 张志刚, 柴路, 章若冰 2004 53 4243]
-
[1] Willner A E, Yilmaz O F 2010 IEEE J. Select. Top. Quantum. Electron. 16 320
[2] Hayashi M, Tanaka H, Ohara K, Otani T 2002 J. Lightwave Technol. 20 236
[3] Kwok C H, Lin C 2006 IEEE J. Select. Top. Quantum Electron. 12 451
[4] Norte D, Willner A E 1995 IEEE Photon Technol. Lett. 7 1354
[5] Chou H F, Bowers J E 2007 IEEE J. Select. Top. Quantum Electron. 13 58
[6] Huo L, Dong Y, Lou C Y, Gao Y Z 2003 IEEE Photon. Technol. Lett. 15 981
[7] Zhao X F, Lou C Y, Zhou H B, Lu D, Huo L 2010 Opt. Express 18 23657
[8] Yu Y, Zhang X L, Rosas-Fernández J B, Huang D X 2009 Opt. Express 17 3964
[9] Chow C W, Wong C S, Tsang H K 2002 Opt. Commun. 209 329
[10] Lin G, Yu K, Chang Y 2006 Opt. Lett. 31 1376
[11] Chen Z X, Wu J, Xu K, Lin J T 2007 Opt. Eng. 46 080502
[12] Wang J, Sun J Q, Sun Q Z 2007 Opt. Lett. 32 2462
[13] Wang D L, Sun J Q, Wang J 2008 Acta Phys. Sin. 57 252 (in Chinese) [汪大林, 孙军强, 王健 2008 57 252]
[14] Wang J, Sun J, Zhang X, Huang D 2009 IEEE J. Quantum Electron. 45 195
[15] Zhou L, Chen H, Poon A W 2008 IEEE J. Lightwave Technol. 26 1950
[16] Ye T, Yan C, Lu Y, Liu F, Su Y 2008 Opt. Express 16 15325
[17] Yan C, Ye T, Su Y 2009 Opt. Lett. 34 58
[18] Kuo B P P, Chui P C 2008 IEEE J. Lightwave Technol. 26 3770
[19] Yin L, Yan Y, Zhou Y, Wu J, Lin J 2006 Chin. Opt. Lett. 4 4
[20] Noel L, Shan X, Ellis A D 1995 IEEE Electon. Lett. 31 277
[21] Xie Y Y, Zhang J G, Wang W Q 2008 J. Modern Opt. 55 3021
[22] Willer A E, Jeffrey B D 2010 IEEE J. Select. Top. Quantum Electron. 16 234
[23] Hui Z Q 2011 Laser Phys. 21 1219
[24] Yang X, Mishra A K, Manning R J, Giller R 2007 IEEE Electon. Lett. 43 469
[25] Bill P P K, Chui P C, Wong K K Y 2008 J. Lightwave Technol. 26 3770
[26] Dong J J, Zhang X L, Wang F, Yu Y 2008 IEEE Electon. Lett. 44 763
[27] Yu C, Yan L S, Luo T, Wang Y 2005 IEEE Photon. Technol. Lett. 17 636
[28] Yan L S, Yi A L, Pan W, Luo B, Ye J 2010 Opt. Express 18 21404
[29] Hui Z Q, Zhang J G 2012 Acta Phys. Sin. 61 014217 (in Chinese) [惠战强, 张建国 2012 61 014217]
[30] Apiratikul P, Astar W, Carter G M 2010 IEEE Photon. Technol. Lett. 22 872
[31] Russell P 2003 Science 299 358
[32] Zsigri B, Peucheret C 2006 IEEE Photon. Technol. Lett. 18 2290
[33] Fok M P, Shu C 2007 IEEE Photon. Technol. Lett. 19 1166
[34] Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B 2004 Acta Phys. Sin. 53 4243 (in Chinese) [胡明列, 王清月, 栗岩峰, 王专, 张志刚, 柴路, 章若冰 2004 53 4243]
Catalog
Metrics
- Abstract views: 6349
- PDF Downloads: 651
- Cited By: 0