-
Photonic crystal fibers with an air hole in the core are analyzed by finite-element method. The relations of mode field distribution, confinement loss and dispersion characteristics with fiber structure parameter and wavelength are achieved. The principle of guiding light in air hole is explained by diffraction and the characteristics of photonic crystal fiber. For the fiber with low loss, single-mode, tightly confined light in the air core, the ranges of structure parameters and wavelengths are obtained. An optimal fiber structure is designed, of which the mode is tightly confined in the air core, and the confinement loss α=5.9× 10-5 dB/km. These provide theoretical instruction for the design and fabrication of photonic crystal fiber with an air hole in the core. The high intensity in an air hole, coupled with long interaction length, promises a new class of experiments in light-matter interaction and nonlinear fiber optics.
-
Keywords:
- photonic crystal fiber /
- air core /
- finite-element method /
- mode distribution
[1] Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nature Photon. 2 496
[2] Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816
[3] Tong L M, Lou J Y, Mazur E 2004 Opt. Express 12 1025
[4] Zhao C J, Tang Z X, Ye Y X, Fan D Y, Qian L J, Wen S C, Chen G H 2007 Opt. Express 15 6629
[5] Xu Q F, Almeida V R, Panepucci R R, Lipson M 2004 Opt. Lett. 29 1626
[6] Almeida V R, Xu Q F, Barrios C A, Lipson M 2004 Opt. Lett. 29 1209
[7] Saitoh K, Koshiba M 2003 IEEE Photon. Technol. Lett. 15 236
[8] Foster M A, Moll K D, Gaeta A L 2004 Opt. Express 12 2880
[9] Bian Y S, Zheng Z, Liu Y, Zhu J S, Zhou T 2010 Opt. Express 18 23756
[10] Wiederhecker G S, Cordeiro C M B, Couny F, Benabid F, Maier S A, Knight J C, Cruz C H B, Fragnito H L 2007 Nature Photon. 1 115
[11] Koshiba M 2002 IEICE Trans. Electron. 85 881
[12] Brechet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber Technol. 6 181
[13] Guenneau S, Nicholet A, Zolla F, Lasquellec S 2002 IEEE Trans. Magn. 38 1261
[14] Masanori K, Kunimasa S 2004 Opt. Lett. 29 1739
[15] Hädrich S, Schreiber T, Pertsch T, Limpert J, Peschel T, Eberhard T R, Tünnermann A 2006 Opt. Express 14 6091
[16] Wang J L, Yao J Q, Chen H M, Bing P B, Li Z X, Zhong K 2011 Acta Phys. Sin. 60 104219 (in Chinese) [汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯 2011 60 104219
[17] Cheng T L, Chai L, Lie Y F, Hu M L, Wang Q Y 2011 Acta Phys. Sin. 60 024216 (in Chinese) [程同蕾, 柴路, 栗岩锋, 胡明列, 王清月 2011 60 024216
-
[1] Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nature Photon. 2 496
[2] Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816
[3] Tong L M, Lou J Y, Mazur E 2004 Opt. Express 12 1025
[4] Zhao C J, Tang Z X, Ye Y X, Fan D Y, Qian L J, Wen S C, Chen G H 2007 Opt. Express 15 6629
[5] Xu Q F, Almeida V R, Panepucci R R, Lipson M 2004 Opt. Lett. 29 1626
[6] Almeida V R, Xu Q F, Barrios C A, Lipson M 2004 Opt. Lett. 29 1209
[7] Saitoh K, Koshiba M 2003 IEEE Photon. Technol. Lett. 15 236
[8] Foster M A, Moll K D, Gaeta A L 2004 Opt. Express 12 2880
[9] Bian Y S, Zheng Z, Liu Y, Zhu J S, Zhou T 2010 Opt. Express 18 23756
[10] Wiederhecker G S, Cordeiro C M B, Couny F, Benabid F, Maier S A, Knight J C, Cruz C H B, Fragnito H L 2007 Nature Photon. 1 115
[11] Koshiba M 2002 IEICE Trans. Electron. 85 881
[12] Brechet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber Technol. 6 181
[13] Guenneau S, Nicholet A, Zolla F, Lasquellec S 2002 IEEE Trans. Magn. 38 1261
[14] Masanori K, Kunimasa S 2004 Opt. Lett. 29 1739
[15] Hädrich S, Schreiber T, Pertsch T, Limpert J, Peschel T, Eberhard T R, Tünnermann A 2006 Opt. Express 14 6091
[16] Wang J L, Yao J Q, Chen H M, Bing P B, Li Z X, Zhong K 2011 Acta Phys. Sin. 60 104219 (in Chinese) [汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯 2011 60 104219
[17] Cheng T L, Chai L, Lie Y F, Hu M L, Wang Q Y 2011 Acta Phys. Sin. 60 024216 (in Chinese) [程同蕾, 柴路, 栗岩锋, 胡明列, 王清月 2011 60 024216
Catalog
Metrics
- Abstract views: 6727
- PDF Downloads: 570
- Cited By: 0