-
A ccording to the compression principle of stationary rescaled pulse (SRP) in the comb-like optical fiber (CPF), the design of dispersion decreasing fiber (DDF) for compressing stationary rescaled pulse is demonstrated in this paper. The dispersion profile of DDF is found to be decreased linearly. The compression ratio and the power ratio are both equal to the ratio between initial and final values of second order dispersion coefficient when the incident pulse is SRP. When the dispersion slope of the fiber is small enough, the fundamental soliton without chirp can be approximated as SRP. When the dispersion slope of the fiber is high, the fundamental soliton without chirp cannot be approximated as SRP. When the incident pulse is fundamental soliton with linear chirp, which is proportional to the dispersion slope of the fiber, the compression ratio and the power ratio are closer to the ratio between initial and final dispersion values,which indicates that the fundamental soliton with linear chirp is approximated as SRP with less error than fundamental soliton without chirp.
-
Keywords:
- SRP(stationary rescaled pulse) /
- CPF(comblike profiled fiber) /
- DDF(dispersion decreasing fiber) /
- dispersion decreasing expression
[1] Tajima K 1987 Opt. Lett. 12 54
[2] Liu J H, Ding Y K, Tan L, Hu Z Y 2004 Acta Phys. Sin. 53 1373(in Chinese)[刘剑辉、丁永奎、谭 莉、胡智勇 2004 53 1373]
[3] Agrawal G P 2001 Applications of Nonlinear Fiber Optics (New York:Academic) Chapter 6
[4] Chernikov S V, Dianov E M, Richardson D J, Payne D N 1993 Opt. Lett. 18 476
[5] Nakazawa M, Kubota H, Tamura K 1999 Opt. Lett. 24 318
[6] Wu Z H, Cao W H 2004 Laser and Infr. 34 408(in Chinese)[吴再华、曹文华 2004 激光与红外 34 408]
[7] Reeves-Hall P C, Lewis S A E, Chernikov S V, Taylor J R 2000 Electron. Lett. 36 622
[8] Inoue T, Tobioka H, Igarashi K J, Namiki S 2006 J. Lightwave Technol. 24 2510
[9] Inoue T, Tobioka H, Namiki S 2005 Phys. Rev. E 72 025601
[10] Ozeki Y, Inoue T 2006 Opt. Lett. 31 1606
[11] Maruta A, Inoue T, Nonaka Y, Yoshika Y 2002 IEEE J. Select. Topics Quantum Electron. 8 640
[12] Mostofi A, Hatami-Hanza H, Chu P L 1997 IEEE J. Quantum Electron. 33 620
[13] Pelusi M D, Liu H F 1997 IEEE J. Quantum Electron. 33 1430
-
[1] Tajima K 1987 Opt. Lett. 12 54
[2] Liu J H, Ding Y K, Tan L, Hu Z Y 2004 Acta Phys. Sin. 53 1373(in Chinese)[刘剑辉、丁永奎、谭 莉、胡智勇 2004 53 1373]
[3] Agrawal G P 2001 Applications of Nonlinear Fiber Optics (New York:Academic) Chapter 6
[4] Chernikov S V, Dianov E M, Richardson D J, Payne D N 1993 Opt. Lett. 18 476
[5] Nakazawa M, Kubota H, Tamura K 1999 Opt. Lett. 24 318
[6] Wu Z H, Cao W H 2004 Laser and Infr. 34 408(in Chinese)[吴再华、曹文华 2004 激光与红外 34 408]
[7] Reeves-Hall P C, Lewis S A E, Chernikov S V, Taylor J R 2000 Electron. Lett. 36 622
[8] Inoue T, Tobioka H, Igarashi K J, Namiki S 2006 J. Lightwave Technol. 24 2510
[9] Inoue T, Tobioka H, Namiki S 2005 Phys. Rev. E 72 025601
[10] Ozeki Y, Inoue T 2006 Opt. Lett. 31 1606
[11] Maruta A, Inoue T, Nonaka Y, Yoshika Y 2002 IEEE J. Select. Topics Quantum Electron. 8 640
[12] Mostofi A, Hatami-Hanza H, Chu P L 1997 IEEE J. Quantum Electron. 33 620
[13] Pelusi M D, Liu H F 1997 IEEE J. Quantum Electron. 33 1430
Catalog
Metrics
- Abstract views: 8087
- PDF Downloads: 438
- Cited By: 0