[1] |
Ma Jun, Wu Xin-Yi, Qin Hui-Xin. Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling. Acta Physica Sinica,
2013, 62(17): 170502.
doi: 10.7498/aps.62.170502
|
[2] |
Li Yu-San, Wei Lin-Ling, Yu Miao, Zhang Meng. Chaos synchronization of regular network based on sliding mode control. Acta Physica Sinica,
2012, 61(12): 120504.
doi: 10.7498/aps.61.120504
|
[3] |
Cao He-Fei, Zhang Ruo-Xun. Parameter modulation digital communication and its circuit implementation using fractional-order chaotic system via a single driving variable. Acta Physica Sinica,
2012, 61(2): 020508.
doi: 10.7498/aps.61.020508
|
[4] |
Tang Liang-Rui, Fan Bing, Kang Zhong-Miao. A chaos synchronization method based on amplitude. Acta Physica Sinica,
2012, 61(8): 080508.
doi: 10.7498/aps.61.080508
|
[5] |
Li Jian-Fen, Li Nong, Chen Chang-Xing. Modification of projective synchronization for a class of fractional order chaotic system by using a single driving variable. Acta Physica Sinica,
2010, 59(11): 7644-7649.
doi: 10.7498/aps.59.7644
|
[6] |
Xue Wei, Guo Yan-Ling, Chen Zeng-Qiang. Analysis of chaos and circuit implementation of a permanent magnet synchronous motor. Acta Physica Sinica,
2009, 58(12): 8146-8151.
doi: 10.7498/aps.58.8146
|
[7] |
Li Jian-Fen, Li Nong, Liu Yu-Ping, Gan Yi. Linear and nonlinear generalized synchronization of a class of chaotic systems by using a single driving variable. Acta Physica Sinica,
2009, 58(2): 779-784.
doi: 10.7498/aps.58.779
|
[8] |
Jing Xiao-Dan, Lü Ling. Generalized synchronization of spatiotemporal chaos systems by phase compression. Acta Physica Sinica,
2008, 57(8): 4766-4770.
doi: 10.7498/aps.57.4766
|
[9] |
Hu Ai-Hua, Xu Zhen-Yuan. Linear generalized synchronization of chaotic systems by using white noise. Acta Physica Sinica,
2007, 56(6): 3132-3136.
doi: 10.7498/aps.56.3132
|
[10] |
Wu Yu-Xi, Huang Xia, Gao Jian, Zheng Zhi-Gang. Phase synchronization and generalized synchronization in doubly driven chaotic oscillators. Acta Physica Sinica,
2007, 56(7): 3803-3812.
doi: 10.7498/aps.56.3803
|
[11] |
Wang Xing-Yuan, Liu Ming. Sliding mode control for the synchronization of master-slave chaotic systems with sector nonlinear input. Acta Physica Sinica,
2005, 54(6): 2584-2589.
doi: 10.7498/aps.54.2584
|
[12] |
Chen Ju-Fang, Zhang Ru-Yuan, Peng Jian-Hua. Experimental study for impulsive synchronization of a discrete chaotic system. Acta Physica Sinica,
2003, 52(7): 1589-1594.
doi: 10.7498/aps.52.1589
|
[13] |
Cheng Li, Zhang Ru-Yuan, Peng Jian-Hua. A method for synchronizing chaos and hyperchaos by single driving varlable. Acta Physica Sinica,
2003, 52(3): 536-541.
doi: 10.7498/aps.52.536
|
[14] |
Lai Jian-Wen, Zhou Shi-Ping, Li Guo-Hui, Xu De-Ming. . Acta Physica Sinica,
2001, 50(1): 21-25.
doi: 10.7498/aps.50.21
|
[15] |
YANG SHI-PING, NIU YHAI-YAN, TIAN GANG, YUAN GUO-YONG, ZHANG SHAN. SYNCHRONIZING CHAOS BY DRIVING PARAMETER. Acta Physica Sinica,
2001, 50(4): 619-623.
doi: 10.7498/aps.50.619
|
[16] |
GAO JIN-FENG, MA XI-KUI, LUO XIAN-JUE. AN ADAPTIVE APPROACH FOR REALIZING ANY CONTINUOUS TIME SCALAR(HYPER)CHAOTIC SIGN AL SYNCHRONIZATION CONTROL. Acta Physica Sinica,
2000, 49(7): 1235-1240.
doi: 10.7498/aps.49.1235
|
[17] |
GAO JIN-FENG, LUO XIAN-JUE, MA XI-KUI. A NONLINEAR FEEDBACK APPROACH FOR REALIZING ANY CONTINUOUS TIME SCALAR (HYPER) CHAOTIC SIGNAL SYNCHRONIZATION CONTROL. Acta Physica Sinica,
2000, 49(5): 838-843.
doi: 10.7498/aps.49.838
|
[18] |
LUO XIAO-SHU, FANG JIN-QING, QU WAN-LI. CONTROLLING HYPERCHAOS THROUGH LENGTHENING TIME OF AUTOCORRELATION OF SIGNAL. Acta Physica Sinica,
1999, 48(4): 589-595.
doi: 10.7498/aps.48.589
|
[19] |
LIU YU-HUAI, MA JUN, LU YI-QUN. UTILIZATION OF DRIVING SUBSYSTEMS TO CONSTRUCT SYNCHRONIZATION WITH CHAOTIC SIGNALS. Acta Physica Sinica,
1999, 48(1): 10-15.
doi: 10.7498/aps.48.10
|
[20] |
Cheng Yan-Xiang, Wang Guang-Rui. . Acta Physica Sinica,
1995, 44(9): 1382-1389.
doi: 10.7498/aps.44.1382
|