搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能区N3+离子与He原子碰撞电荷转移截面研究

林晓贺 林敏娟 王堃 吴勇 任元 王瑜 李婕维

引用本文:
Citation:

低能区N3+离子与He原子碰撞电荷转移截面研究

林晓贺, 林敏娟, 王堃, 吴勇, 任元, 王瑜, 李婕维

Charge transfer cross sections of collisions of N3+ ions with He atoms in low energy region

LIN Xiaohe, LIN Minjuan, WANG Kun, WU Yong, REN Yuan, WANG Yu, LI Jiewei
cstr: 32037.14.aps.74.20250581
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • N3+离子与基态He原子碰撞过程在天体物理、星际空间和实验室等离子体环境中具有重要研究意义. 本文采用从头算的多参考单双激发组态相互作用方法精确计算了[NHe]3+碰撞体系的分子结构参数, 包括势能曲线和耦合矩阵元等. 基于计算得到的结构参数, 采用全量子分子轨道强耦合方法开展了低能N3+离子与He原子碰撞电荷转移过程研究, 获得了能量在3.16 × 10–3 eV—24 keV(即2.25 × 10–4 eV/u—1.73 keV/u)范围内的总单电荷、双电荷转移截面和态选择截面. 在计算中考虑了电荷平动因子、高角动量态对碰撞过程的影响, 发现高角动量态对电荷转移截面具有显著影响. 与现有实验和理论结果相比, 当前计算的单电荷和双电荷转移截面与实验测量值更为接近. 相较于Liu等(2011 Phys. Rev. A 84 042706)未考虑高角动量态的研究, 当碰撞能量大于10 eV/u时, 其总单电荷转移截面约高出当前计算值2—3倍, 表明高角动量态对电荷转移过程具有显著影响. 同时研究表明单电荷转移截面远大于双电荷转移截面, 在碰撞电荷转移过程中占据主导地位. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00165中访问获取.
    The collision process between N3+ ions and He atoms is of great significance in astrophysics, interstellar space and laboratory plasma environment. The single- and double-charge transfer processes for the collisions of N3+ with He atoms are studied by using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method. The ab initio multireference single- and double-excitation configuration interaction (MRD-CI) methods are employed to obtain the adiabatic potentials and the radial and rotational coupling matrix elements that are required in the QMOCC calculation. In the present QMOCC calculations, 10 1Σ states, 8 1Π states and 4 1Δ states are considered, and total single- and double-charge transfer cross sections and state selection cross sections are calculated in an energy region from 3.16 × 10–3 eV–24 keV (i.e., 2.25 × 10–4 eV/u–1.73 keV/u). Comparison of our results with the previous theoretical and experimental results shows that our results agree well with the experimental values for the total double-charge transfer (DCT) cross sections. For the total single-charge transfer (SCT) cross sections, our QMOCC results are slightly higher than the experimental results in an energy region of 0.2–11 eV/u. When the energy is higher than 11 eV/u, the present QMOCC results are in good agreement with the experimental results. The total SCT cross section is significantly larger than the total DCT cross section, so SCT process is a dominant reaction process. For the SCT process, it can be observed that the charge transfer to N2+(2s2p2 2D) and N2+(2s22p 2P°) is very important. It should be noted that although we and Liu et al. (Phys. Rev. A 2011 84 042706) both used the QMOCC method to study the charge transfer cross section, our calculation results are still significantly different from their calculation results. It is due to the fact that Liu et al.’s calculations only considered 10 1Σ states and 8 1Π states, and ignored the effect of 1Δ states.The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00165.
      通信作者: 王瑜, wangy@tyust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12203106, 12204288)资助的课题.
      Corresponding author: WANG Yu, wangy@tyust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12203106, 12204288).
    [1]

    朱宇豪, 袁翔, 吴勇, 王建国 2023 72 163401Google Scholar

    Zhu Y H, Yuan X, Wu Y, Wang J G 2023 Acta Phys. Sin. 72 163401Google Scholar

    [2]

    刘春华 2009 博士学位论文 (北京: 中国科学院大学)

    Liu C H 2009 Ph. D. Dissertation (Beijing: University of the Chinese Academy of Sciences

    [3]

    高志民, 陈熙萌, 刘兆远, 丁宝卫, 鲁彦霞, 付宏斌, 刘玉文, 杜娟, 崔莹, 邵剑雄, 张红强, 孙光智 2007 56 2079Google Scholar

    Gao Z M, Chen X M, Liu Z Y, Ding B W, Lu Y X, Fu H B, Liu Y W, Du J, Cui Y, Shao J X, Zhang H Q, Sun G Z 2007 Acta Phys. Sin. 56 2079Google Scholar

    [4]

    林晓贺 2019 博士学位论文 (北京: 北京理工大学)

    Lin X H 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology

    [5]

    Rice J E, Marmar E S, Terry J L, Källne E, Källne J 1986 Phys. Rev. Lett. 56 50Google Scholar

    [6]

    Steigman G 1975 Astrophys J. 199 642Google Scholar

    [7]

    Liu X J, Wang J G, Qu Y Z, Buenker R J 2011 Phys. Rev. A 84 042706Google Scholar

    [8]

    Mondal M, Mandal B, Mistry T, Jana D, Purkait M 2024 Chin. Phys. B 33 113401Google Scholar

    [9]

    Kamber E Y, Akgüngör K, Leather C, Brenton A G 1996 Phys. Rev. A 54 1452Google Scholar

    [10]

    Ishii K, Itoh A, Okuno K 2004 Phys. Rev. A 70 042716Google Scholar

    [11]

    Gardner L D, Bayfield J E, Koch P M, et al. 1979 Phys. Rev. A 20 766Google Scholar

    [12]

    Xu J W, Zhu X L, Feng W T, et al. 2019 X-Ray Spectrometry 49 85Google Scholar

    [13]

    Lin M J, Li R, Lin X H, Ren X H 2024 IEEE Academic International Symposium on Optoelectronics and Micro electronics Technology (AISOMT) Harbin, China, November 21–22, 2024 p139

    [14]

    Buenker R J, Liebermann H P, Izgorodina E I 2003 Chem. Phys. 291 115Google Scholar

    [15]

    Buenker R J, Peyerimhoff S D 1974 Theoret. Chim. Acta 35 33Google Scholar

    [16]

    Krebs S, Buenker R J 1995 J. Chem. Phys. 103 5613Google Scholar

    [17]

    吴勇, 刘玲, 王建国 2008 57 947Google Scholar

    Wu Y, Liu L, Wang J G 2008 Acta Phys. Sin. 57 947Google Scholar

    [18]

    Nolte J L, Stancil P C, Liebermann H P, Buenker R J, Hui Y, Schultz D R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 245202Google Scholar

    [19]

    Zygelman B, Cooper D L, Ford M J, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 3846Google Scholar

    [20]

    Wu Y, Stancil P C, Liebermann H P, et al. 2011 Phys. Rev. A 84 022711Google Scholar

    [21]

    Kramida, A, Ralchenko Y, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (Ver. 5.12) [2025-4-29]

    [22]

    Errea L F, Mendez L, Riera A 1982 J. Phys. B 15 101Google Scholar

    [23]

    Bacchus M C, Ceyzeriat P 1998 Phys. Rev. A 58 1162Google Scholar

    [24]

    Errea L F, Harel C, Jouini H, et al 1994 J. Phys. B 27 3603Google Scholar

    [25]

    Wang K, Dong C, Qu Y Z, et al. 2023 Chin. Phys. B 32 083103Google Scholar

    [26]

    Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, Buenker R J 2020 Chin. Phys. Lett. 37 023401Google Scholar

  • 图 1  NHe3+碰撞体系单重态的绝热势能曲线

    Fig. 1.  Adiabatic potential curves of the singlet of NHe3+ collision system.

    图 2  NHe3+碰撞体系单重态相邻两1Σ态间的径向耦合矩阵元

    Fig. 2.  Radial coupling matrix elements between the adjacent 1Σ states for NHe3+ collision system.

    图 3  NHe3+碰撞体系单重态相邻两1Π态间的径向耦合矩阵元

    Fig. 3.  Radial coupling matrix elements between the adjacent 1Π states for NHe3+ collision system.

    图 4  NHe3+碰撞体系单重态相邻两1Δ态间的径向耦合矩阵元

    Fig. 4.  Radial coupling matrix elements between the adjacent 1Δ states for NHe3+ collision system.

    图 5  NHe3+碰撞体系单重态部分重要的转动耦合矩阵元

    Fig. 5.  Some important singlet rotational coupling matrix elements for NHe3+ collision system.

    图 6  N3+离子与基态He原子碰撞总的单、双电荷转移截面

    Fig. 6.  Total single and double charge transfer cross sections in N3+-He collisions.

    图 7  N3+离子与基态He原子碰撞电荷转移形成N+离子的态选择截面

    Fig. 7.  State selective cross sections for charge transfer to N+ ion in N3+-He collisions.

    图 8  N3+离子与基态He原子碰撞电荷转移形成N2+离子的态选择截面

    Fig. 8.  State selective cross sections for charge transfer to N2+ ion in N3+-He collisions.

    表 1  NHe3+单重态渐近区各能级与NIST表[21]中结果的对比

    Table 1.  Compared the energy levels in the asymptotic region of the singlet state of NHe3+ with the results in NIST[21]

    渐进原子态 分子态 Energy/eV
    MRD-CI NIST[21] Errors
    N2+(2s22p 2Po)+He+(1s) 11Σ, 11Π 0.0000 0.0000 0.0000
    N2+(2s 2p2 2D)+He+(1s) 21Σ, 11Δ, 21Π 12.5087 12.5254 0.0167
    N2+(2s2p2 2P)+He+(1s) 31Π 18.0958 18.0863 0.0095
    N2+(2s2p2 2S)+He+(1s) 31Σ 16.2564 16.2425 0.0139
    N3+(2s2 1S)+He(1s2) 41Σ 22.8803 22.8579 0.0224
    N2+((2p3 2Do)+He+(1s) 41Π, 21Δ 25.1239 25.1780 0.0541
    N+(2s22p2 1D)+He2+ 51Σ, 51Π, 31Δ 26.7503 26.7150 0.0353
    N2+(2s23s 2S)+He+(1s) 61Σ 27.4341 37.4380 0.0039
    N2+(2p3 2Po)+He+(1s) 71Σ, 61Π 28.5454 28.5665 0.0211
    N+(2s22p2 1S)+He2+ 81Σ 28.9204 28.8690 0.0514
    N2+(2s23p 2Po)+He+(1s) 91Σ, 71Π 30.4405 30.4586 0.0181
    N2+(2s23d 2D)+He+(1s) 101Σ, 81Π, 41Δ 33.1233 33.1333 0.0100
    N2+(2s2p3s 2Po)+He+(1s) 111Σ, 91Π 36.8428 36.8421 0.0007
    N2+(2s2p3p 2P)+He+(1s) 101Π 38.2795 38.3274 0.0479
    下载: 导出CSV
    Baidu
  • [1]

    朱宇豪, 袁翔, 吴勇, 王建国 2023 72 163401Google Scholar

    Zhu Y H, Yuan X, Wu Y, Wang J G 2023 Acta Phys. Sin. 72 163401Google Scholar

    [2]

    刘春华 2009 博士学位论文 (北京: 中国科学院大学)

    Liu C H 2009 Ph. D. Dissertation (Beijing: University of the Chinese Academy of Sciences

    [3]

    高志民, 陈熙萌, 刘兆远, 丁宝卫, 鲁彦霞, 付宏斌, 刘玉文, 杜娟, 崔莹, 邵剑雄, 张红强, 孙光智 2007 56 2079Google Scholar

    Gao Z M, Chen X M, Liu Z Y, Ding B W, Lu Y X, Fu H B, Liu Y W, Du J, Cui Y, Shao J X, Zhang H Q, Sun G Z 2007 Acta Phys. Sin. 56 2079Google Scholar

    [4]

    林晓贺 2019 博士学位论文 (北京: 北京理工大学)

    Lin X H 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology

    [5]

    Rice J E, Marmar E S, Terry J L, Källne E, Källne J 1986 Phys. Rev. Lett. 56 50Google Scholar

    [6]

    Steigman G 1975 Astrophys J. 199 642Google Scholar

    [7]

    Liu X J, Wang J G, Qu Y Z, Buenker R J 2011 Phys. Rev. A 84 042706Google Scholar

    [8]

    Mondal M, Mandal B, Mistry T, Jana D, Purkait M 2024 Chin. Phys. B 33 113401Google Scholar

    [9]

    Kamber E Y, Akgüngör K, Leather C, Brenton A G 1996 Phys. Rev. A 54 1452Google Scholar

    [10]

    Ishii K, Itoh A, Okuno K 2004 Phys. Rev. A 70 042716Google Scholar

    [11]

    Gardner L D, Bayfield J E, Koch P M, et al. 1979 Phys. Rev. A 20 766Google Scholar

    [12]

    Xu J W, Zhu X L, Feng W T, et al. 2019 X-Ray Spectrometry 49 85Google Scholar

    [13]

    Lin M J, Li R, Lin X H, Ren X H 2024 IEEE Academic International Symposium on Optoelectronics and Micro electronics Technology (AISOMT) Harbin, China, November 21–22, 2024 p139

    [14]

    Buenker R J, Liebermann H P, Izgorodina E I 2003 Chem. Phys. 291 115Google Scholar

    [15]

    Buenker R J, Peyerimhoff S D 1974 Theoret. Chim. Acta 35 33Google Scholar

    [16]

    Krebs S, Buenker R J 1995 J. Chem. Phys. 103 5613Google Scholar

    [17]

    吴勇, 刘玲, 王建国 2008 57 947Google Scholar

    Wu Y, Liu L, Wang J G 2008 Acta Phys. Sin. 57 947Google Scholar

    [18]

    Nolte J L, Stancil P C, Liebermann H P, Buenker R J, Hui Y, Schultz D R 2012 J. Phys. B: At. Mol. Opt. Phys. 45 245202Google Scholar

    [19]

    Zygelman B, Cooper D L, Ford M J, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 3846Google Scholar

    [20]

    Wu Y, Stancil P C, Liebermann H P, et al. 2011 Phys. Rev. A 84 022711Google Scholar

    [21]

    Kramida, A, Ralchenko Y, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (Ver. 5.12) [2025-4-29]

    [22]

    Errea L F, Mendez L, Riera A 1982 J. Phys. B 15 101Google Scholar

    [23]

    Bacchus M C, Ceyzeriat P 1998 Phys. Rev. A 58 1162Google Scholar

    [24]

    Errea L F, Harel C, Jouini H, et al 1994 J. Phys. B 27 3603Google Scholar

    [25]

    Wang K, Dong C, Qu Y Z, et al. 2023 Chin. Phys. B 32 083103Google Scholar

    [26]

    Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, Buenker R J 2020 Chin. Phys. Lett. 37 023401Google Scholar

计量
  • 文章访问数:  459
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-30
  • 修回日期:  2025-05-30
  • 上网日期:  2025-06-11
  • 刊出日期:  2025-08-05

/

返回文章
返回
Baidu
map