搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下无线光通信物理层安全性研究

卫祎昕 杨昌钢 卫阿敏 张国峰 秦成兵 陈瑞云 胡建勇 肖连团 贾锁堂

引用本文:
Citation:

水下无线光通信物理层安全性研究

卫祎昕, 杨昌钢, 卫阿敏, 张国峰, 秦成兵, 陈瑞云, 胡建勇, 肖连团, 贾锁堂
cstr: 32037.14.aps.74.20241547

Physical-layer security of underwater wireless optical communication

WEI Yixin, YANG Changgang, WEI Amin, ZHANG Guofeng, QIN Chengbing, CHEN Ruiyun, HU Jianyong, XIAO Liantuan, JIA Suotang
cstr: 32037.14.aps.74.20241547
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 水下无线光通信(UWOC)具有定向传输的特点, 相较于声呐、无线电等广播式传输模式具有更高的安全性. 然而, 由于海水散射效应部分光子在传输过程中会被散射出预设路径, 从而造成信息泄漏风险. 本文基于搭线窃听信道模型提出一种UWOC物理层安全性分析模型以评估信息泄漏风险. 该模型通过计算UWOC系统中合法信道与窃听信道的容量差值, 来评估通信系统的安全性. 具体而言, 该模型首先基于蒙特卡罗模拟与实验测量方法分析信道中散射光子的三维分布, 然后从信息论角度分析合法通信双方信道容量以及窃听信道容量, 最终获得安全保密容量的三维空间分布, 从而评估散射光子所造成的信息泄漏风险与系统的通信安全性. 本文应用该模型对清澈海水环境下的UWOC系统的安全性进行了分析, 研究发现传输路径附近一定范围内系统的保密容量为零, 证明散射光子会造成信息泄漏. 本研究成果为UWOC系统定量安全分析提供了解决策略, 能够为UWOC系统和编解码方案设计提供有力支撑.
    Underwater wireless optical communication (UWOC) possesses significant advantages, such as high bandwidth, low latency, and low power consumption, making it a key technology for building information networks in marine environments. However, due to the scattering effect of seawater, some photons carrying information inevitably scatter out of their predetermined paths, leading to the possibility for information leakage. Therefore, we propose a physical-layer security analysis model for UWOC systems based on the wiretap channel model. The model evaluates the security of the communication system by calculating the capacity difference between the legitimate channel and the eavesdropping channel in the UWOC system. Specifically, the model first constructs the three-dimensional intensity distribution of scattered photons in the underwater channel via Monte Carlo simulations and experimental measurements. Then, it calculates the capacities of both the legitimate and eavesdropping channels based on the decoding results. Finally, the three-dimensional distribution of secrecy capacity is derived to assess the security of the communication system. In this work this model is used to analyze the security of the UWOC system in clear seawater environments. The results show that the secrecy capacity of the system is zero within a certain range near the transmission path, demonstrating that scattered photons can cause information leakage. We recommend that, in practical applications, monitoring the non-signal transmission area near the transmitter is essential to ensure communication security. This research provides a solution for analyzing the quantitative security of UWOC, which can strongly support the design of UWOC systems and encoding/decoding schemes.
      通信作者: 杨昌钢, changgang.yang@sxu.edu.cn ; 肖连团, xlt@sxu.edu.cn
    • 基金项目: 山西科技重大专项计划(批准号: 202201010101005)和国家自然科学基金青年科学基金(批准号: 62105193)资助的课题.
      Corresponding author: YANG Changgang, changgang.yang@sxu.edu.cn ; XIAO Liantuan, xlt@sxu.edu.cn
    • Funds: Project supported by the Science and Technology Major Special Project of Shanxi Province, China (Grant No. 202201010101005) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62105193).
    [1]

    Qi Z R, Zhao X Y, Pompili D 2023 IEEE Trans. Commun. 71 7163Google Scholar

    [2]

    Naik R P, Salman M, Bolboli J, Shetty C S, Chung W Y 2024 IEEE Trans. Veh. Technol. 73 8420Google Scholar

    [3]

    Esmaiel H, Sun H X 2024 Sensors 24 7075Google Scholar

    [4]

    郑晓桐, 郭立新, 程明建, 李江挺 2018 67 214206Google Scholar

    Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206Google Scholar

    [5]

    Abd El-Mottaleb S A, Singh M, Armghan A, Atieh A, Aly M H 2025 Opt. Commun. 574 131204Google Scholar

    [6]

    Zhang L, Wang Z M, Wei Z X, Chen C, Wei G D, Fu H Y, Dong Y H 2020 Opt. Express 28 31796Google Scholar

    [7]

    Yan Z Q, Hu C Q, Li Z M, Li Z Y, Hang Z, Xian M J 2021 Photonics Res. 9 2360Google Scholar

    [8]

    Fei C, Wang Y, Du J, Chen R L, Lv N F, Zhang G W, Tian J H, Hong X J, He S L 2022 Opt. Express 30 2326Google Scholar

    [9]

    Nath N, Chouhan S 2024 IEEE Internet Things J. 11 39721Google Scholar

    [10]

    Li S, Wang P, Li G, Zhang X, Li H, Zhou B, Yang T 2023 Opt. Express 31 34729Google Scholar

    [11]

    Kong M W, Wang J L, Chen Y F, Ali T, Sarwar R, Qiu Y, Wang S L, Han J, Xu J 2017 Opt. Express 25 21509Google Scholar

    [12]

    Fu X Q, Li H W, Shi J H, Li T, Bao W S 2025 Sci. China-Phys. Mech. Astron. 68 210314Google Scholar

    [13]

    Li Z F, Kong X H, Zhang J, Shao L D, Zhang D J, Liu J, Wang X, Zhu W R, Qiu C W 2022 Laser Photon. Rev. 16 2200113Google Scholar

    [14]

    Wang H M, Zhang X, Jiang J C 2019 IEEE Wirel. Commun. 26 32Google Scholar

    [15]

    Wyner A D 1975 Bell Syst. Tech. J. 54 1355Google Scholar

    [16]

    Guan K, Cho J, Winzer P J 2018 Opt. Commun. 408 31Google Scholar

    [17]

    Shannon C E, Weaver W 1949 The Mathematical Theory of Information (Urbana: University of Illinois Press) p145

    [18]

    Williamson C A, Hollins R C 2022 Appl. Opt. 61 9951Google Scholar

    [19]

    Zhang J L, Kou L L, Yang Y, He F T, Duan Z L 2020 Opt. Commun. 475 126214Google Scholar

    [20]

    Ramley I, Alzayed H M, Al-Hadeethi Y, Chen M G, Barasheed A Z 2024 Mathematics 12 3904Google Scholar

    [21]

    Wen H, Yin H X, Ji X Y, Huang A 2023 Appl. Opt. 62 6883Google Scholar

    [22]

    Gabriel C, Khalighi M A, Bourennane S, Léon P, Rigaud V 2013 J. Opt. Commun. Netw. 5 1Google Scholar

    [23]

    Hollins R C, Williamson C A 2023 Appl. Opt. 62 6218Google Scholar

    [24]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144Google Scholar

    [25]

    Hu J Y, Jing M Y, Zhang G F, Qin C B, Xiao L T, Jia S T 2018 Opt. Express 26 20835Google Scholar

    [26]

    Hoang T M, Vahid A, Tuan H D, Hanzo L 2024 IEEE Commun. Surv. Tutor. 26 1830Google Scholar

    [27]

    Illi E, Qaraqe M, Althunibat S, Alhasanat A, Alsafasfeh M, de Ree M, Mantas G, Rodriguez J, Aman W, Al-Kuwari S 2024 IEEE Commun. Surv. Tutor. 26 347Google Scholar

    [28]

    韩彦睿, 李伟, 臧延华, 杨昌钢, 陈瑞云, 张国峰, 秦成兵, 胡建勇, 肖连团 2023 72 160301Google Scholar

    Han Y R, Li W, Zang Y H, Yang C G, Chen R Y, Zhang G F, Qin C B, Hu J Y, Xiao L T 2023 Acta Phys. Sin. 72 160301Google Scholar

    [29]

    Rioul O, Magossi J C 2014 Entropy 16 4892Google Scholar

    [30]

    Solonenko M G, Mobley C D 2015 Appl. Opt. 54 5392Google Scholar

    [31]

    Liu X Y, Yang S H, Gao Y Z, Li J, Li C F, Xu Z, Fan C Y 2024 Opt. Commun. 569 130747Google Scholar

  • 图 1  搭线窃听信道模型

    Fig. 1.  Wiretap channel model.

    图 2  水下无线光通信(UWOC)物理层系统示意图

    Fig. 2.  Schematic diagram of the physical-layer system for underwater wireless optical communication (UWOC).

    图 3  UWOC物理层安全性分析模型

    Fig. 3.  UWOC physical layer security analysis.

    图 4  水下光子传输蒙特卡罗仿真流程

    Fig. 4.  Monte Carlo simulation process for underwater transmission of photons.

    图 5  窃听者接收器空间位置排布示意图

    Fig. 5.  Schematic diagram of the spatial arrangement of eavesdropper.

    图 6  远洋清澈海水环境下窃听者散射光子强度的模拟仿真 (a) 散射光子的三维散点分布图; (b) 3°, 6°, 9°径向下散射光子强度的衰减曲线, 其可通过单指数衰减函数拟合; (c) 散射光子等光强曲线, 其可通过双指数函数拟合; (d) 散射光子强度三维空间分布图, 由于光子分布沿光束传输方向具有轴对称性, 图中以二维剖面图的形式展示光子的三维分布

    Fig. 6.  Simulation of scattered photon intensity in clear seawater: (a) Scatter plot of scattered photon intensity; (b) intensity decay curves of scattered photon at radial angles of 3°, 6°, and 9°, which can be fitted by single exponential decay function; (c) contours of scattered photon intensity, which can be fitted by double exponential function; (d) intensity distribution map of scattered photons by simulation, the three-dimensional spatial distribution of scattered photon intensity is represented in the form of a two-dimensional profile due to the axial symmetry of photon distribution along the beam propagation direction.

    图 7  UWOC系统装置示意图 (a) 发射端模块; (b) 接收端模块; (c) 窃听者模块; (d) 水下光程池; LD为激光二极管, AWG为任意波形发生器, SPAD为单光子雪崩二极管, TCSPC为时间相关单光子计数采集卡

    Fig. 7.  UWOC system: (a) Transmitter; (b) receiver; (c) eavesdropper; (d) water tank. LD represents laser diode, AWG represents arbitrary waveform generator, SPAD represents single-photon avalanche diode, TCSPC represents time-correlated single photon counting.

    图 8  (a) 水下光程池实物图; (b) 探测镜头示意图

    Fig. 8.  (a) Photograph of water tank; (b) schematic diagram of the lens.

    图 9  散射光子强度三维空间分布图实验测量方案

    Fig. 9.  Experimental measurement scheme for the intensity distribution map of scattered photons.

    图 10  (a) 远洋清澈海水条件下窃听者散射光子强度分布图实验测量结果; (b) 系统保密容量分布图

    Fig. 10.  (a) Intensity distribution map of scattered photons by experimental measurement in clear seawater; (b) secrecy capacity distribution map in clear seawater.

    图 11  (a), (b) 纯净海水与沿岸海水条件下窃听者散射光子强度分布图; (c), (d) 纯净海水与沿岸海水条件下系统保密容量分布图

    Fig. 11.  (a), (b) Intensity distribution maps of scattered photons in pure seawater and coastal seawater; (c), (d) secrecy capacity distribution maps in pure seawater and coastal seawater.

    表 1  蒙特卡罗仿真参数

    Table 1.  Parameters for the Monte Carlo simulation.

    参数 数值 参数 数值
    光子数 107 接收孔径/mm 50
    光斑直径/mm 25 接收器视场角/(°) 4
    光束发散角/rad 10–4 光子阈值 10–5
    吸收系数a/m–1 0.065 散射系数b/m–1 0.195
    下载: 导出CSV
    Baidu
  • [1]

    Qi Z R, Zhao X Y, Pompili D 2023 IEEE Trans. Commun. 71 7163Google Scholar

    [2]

    Naik R P, Salman M, Bolboli J, Shetty C S, Chung W Y 2024 IEEE Trans. Veh. Technol. 73 8420Google Scholar

    [3]

    Esmaiel H, Sun H X 2024 Sensors 24 7075Google Scholar

    [4]

    郑晓桐, 郭立新, 程明建, 李江挺 2018 67 214206Google Scholar

    Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206Google Scholar

    [5]

    Abd El-Mottaleb S A, Singh M, Armghan A, Atieh A, Aly M H 2025 Opt. Commun. 574 131204Google Scholar

    [6]

    Zhang L, Wang Z M, Wei Z X, Chen C, Wei G D, Fu H Y, Dong Y H 2020 Opt. Express 28 31796Google Scholar

    [7]

    Yan Z Q, Hu C Q, Li Z M, Li Z Y, Hang Z, Xian M J 2021 Photonics Res. 9 2360Google Scholar

    [8]

    Fei C, Wang Y, Du J, Chen R L, Lv N F, Zhang G W, Tian J H, Hong X J, He S L 2022 Opt. Express 30 2326Google Scholar

    [9]

    Nath N, Chouhan S 2024 IEEE Internet Things J. 11 39721Google Scholar

    [10]

    Li S, Wang P, Li G, Zhang X, Li H, Zhou B, Yang T 2023 Opt. Express 31 34729Google Scholar

    [11]

    Kong M W, Wang J L, Chen Y F, Ali T, Sarwar R, Qiu Y, Wang S L, Han J, Xu J 2017 Opt. Express 25 21509Google Scholar

    [12]

    Fu X Q, Li H W, Shi J H, Li T, Bao W S 2025 Sci. China-Phys. Mech. Astron. 68 210314Google Scholar

    [13]

    Li Z F, Kong X H, Zhang J, Shao L D, Zhang D J, Liu J, Wang X, Zhu W R, Qiu C W 2022 Laser Photon. Rev. 16 2200113Google Scholar

    [14]

    Wang H M, Zhang X, Jiang J C 2019 IEEE Wirel. Commun. 26 32Google Scholar

    [15]

    Wyner A D 1975 Bell Syst. Tech. J. 54 1355Google Scholar

    [16]

    Guan K, Cho J, Winzer P J 2018 Opt. Commun. 408 31Google Scholar

    [17]

    Shannon C E, Weaver W 1949 The Mathematical Theory of Information (Urbana: University of Illinois Press) p145

    [18]

    Williamson C A, Hollins R C 2022 Appl. Opt. 61 9951Google Scholar

    [19]

    Zhang J L, Kou L L, Yang Y, He F T, Duan Z L 2020 Opt. Commun. 475 126214Google Scholar

    [20]

    Ramley I, Alzayed H M, Al-Hadeethi Y, Chen M G, Barasheed A Z 2024 Mathematics 12 3904Google Scholar

    [21]

    Wen H, Yin H X, Ji X Y, Huang A 2023 Appl. Opt. 62 6883Google Scholar

    [22]

    Gabriel C, Khalighi M A, Bourennane S, Léon P, Rigaud V 2013 J. Opt. Commun. Netw. 5 1Google Scholar

    [23]

    Hollins R C, Williamson C A 2023 Appl. Opt. 62 6218Google Scholar

    [24]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144Google Scholar

    [25]

    Hu J Y, Jing M Y, Zhang G F, Qin C B, Xiao L T, Jia S T 2018 Opt. Express 26 20835Google Scholar

    [26]

    Hoang T M, Vahid A, Tuan H D, Hanzo L 2024 IEEE Commun. Surv. Tutor. 26 1830Google Scholar

    [27]

    Illi E, Qaraqe M, Althunibat S, Alhasanat A, Alsafasfeh M, de Ree M, Mantas G, Rodriguez J, Aman W, Al-Kuwari S 2024 IEEE Commun. Surv. Tutor. 26 347Google Scholar

    [28]

    韩彦睿, 李伟, 臧延华, 杨昌钢, 陈瑞云, 张国峰, 秦成兵, 胡建勇, 肖连团 2023 72 160301Google Scholar

    Han Y R, Li W, Zang Y H, Yang C G, Chen R Y, Zhang G F, Qin C B, Hu J Y, Xiao L T 2023 Acta Phys. Sin. 72 160301Google Scholar

    [29]

    Rioul O, Magossi J C 2014 Entropy 16 4892Google Scholar

    [30]

    Solonenko M G, Mobley C D 2015 Appl. Opt. 54 5392Google Scholar

    [31]

    Liu X Y, Yang S H, Gao Y Z, Li J, Li C F, Xu Z, Fan C Y 2024 Opt. Commun. 569 130747Google Scholar

  • [1] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析.  , 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [2] 王涛, 王章行, 沈小雨, 朱仁江, 蒋丽丹, 陆寰宇, 路永乐, 宋晏蓉, 张鹏. 基于490 nm垂直外腔面发射激光器的长距离水下激光通信系统.  , 2024, 73(17): 174202. doi: 10.7498/aps.73.20240860
    [3] 李源, 石爱红, 陈国玉, 顾秉栋. 基于蒙特卡罗方法的4H-SiC(0001)面聚并台阶形貌演化机理.  , 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [4] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟.  , 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [5] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子.  , 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [6] 孙贤明, 肖赛, 王海华, 万隆, 申晋. 高斯光束在双层云中传输的蒙特卡罗模拟.  , 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [7] 李树, 蓝可, 赖东显, 刘杰. 球形黑腔辐射输运问题的蒙特卡罗模拟.  , 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [8] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法.  , 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [9] 谢朝, 邹炼, 侯氢, 郑霞. 质子束治疗中非均匀组织的等效水厚度修正研究.  , 2013, 62(6): 068701. doi: 10.7498/aps.62.068701
    [10] 戴春娟, 刘希琴, 刘子利, 刘伯路. 铝基碳化硼材料中子屏蔽性能的蒙特卡罗模拟.  , 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [11] 李刚, 邓力, 黄则尧, 李树. 非定常辐射输运问题的蒙特卡罗自适应偏倚抽样.  , 2011, 60(2): 022401. doi: 10.7498/aps.60.022401
    [12] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究.  , 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [13] 鞠志萍, 曹午飞, 刘小伟. 蒙特卡罗模拟单阻止柱双散射体质子束流扩展方法.  , 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [14] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究.  , 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [15] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值.  , 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [16] 郑飞腾, 杨中海, 金晓林. 空心阴极类火花放电初始电离过程的PIC/MCC模拟.  , 2008, 57(2): 990-995. doi: 10.7498/aps.57.990
    [17] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究.  , 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [18] 陈法新, 郑 坚, 杨建伦. 中子厚针孔成像数值模拟研究.  , 2006, 55(11): 5947-5952. doi: 10.7498/aps.55.5947
    [19] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论.  , 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [20] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法.  , 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
计量
  • 文章访问数:  478
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04
  • 修回日期:  2025-01-08
  • 上网日期:  2025-02-09
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map