搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁约束燃烧等离子体物理的现状与展望

孙有文 仇志勇 万宝年

引用本文:
Citation:

磁约束燃烧等离子体物理的现状与展望

孙有文, 仇志勇, 万宝年

Current status and prospects of burning plasma physics in magnetically confined fusion

Sun You-Wen, Qiu Zhi-Yong, Wan Bao-Nian
PDF
HTML
导出引用
  • 本文从设计和运行托卡马克聚变堆需求的角度, 简要概述了托卡马克高约束运行方案和高能量粒子约束涉及的关键物理的发展现状和挑战. 过去几十年中, 托卡马克高约束模式物理研究取得了重要进展, 明确了聚变堆运行区的主要稳定性和约束的限制条件及其性能优化的主要调控手段, 发展了感应、混合和稳态等若干可能适用于未来托卡马克聚变堆的运行方案. 在反应堆阿尔法粒子加热主导的条件下, 潜在主导阿尔法粒子输运损失的阿尔芬不稳定性的线性谱特征和激发机制得到了充分的理解; 在阿尔芬不稳定性的非线性饱和、阿尔法粒子约束, 及通过加热沉积和微观湍流对等离子体约束的影响等方面开展了大量的实验和理论探索. 当前, 磁约束聚变物理已进入临近点火燃烧等离子体研究的新阶段, 面临着全新的挑战, 如: 聚变堆条件下如何实现高能量阿尔法粒子对等离子体有效自加热; 在阿尔法粒子自加热为主条件下, 如何通过调控等离子体关键参数分布维持等离子体稳定性和高约束性能, 实现聚变堆高效安全运行; 能否建立全尺度模型, 实现聚变堆复杂等离子体的长时间动力学过程的准确预测等. 这些关键问题的解决, 可为未来聚变堆的设计和运行奠定坚实的物理基础, 同时推动等离子体学科的发展.
    Current status and challenges of key physics related to high-confinement operational scenarios and energetic particle confinement are briefly reviewed from the perspective of design and operation of tokamak-based fusion reactors. In the past few decades, significant progress has been made in the research on high-confinement mode physics, i.e. the main stability and confinement constraints on operational window of a fusion reactor have been identified, and some control methods for adjusting plasma kinetic profiles to optimize performance have been developed. Several operational scenarios, including inductive, hybrid and steady-state etc, which are potentially applicable for future reactors, have been developed. In the conditions that fusion alpha particle self-heating is predominant and shear Alfvén wave (SAW) instabilities potentially dominate fusion alpha particle transport, the SAW linear stability properties and excitation mechanisms are understood in depth, and the SAW instabilities nonlinear saturation, alpha particle confinement, and the influence of the heating deposition and the micro-turbulence regulation on fusion profile are under extensive investigation. The magnetically confined fusion research has entered a new stage of ignition and burning plasma physics, and new challenges that are faced are addressed, including whether efficient self-heating of plasmas by fusion alpha particles can be achieved, how the plasma stability and high-confinement can be maintained through the active control of key plasma profiles under the condition of dominant alpha particle heating, and whether it is possible to establish accurate models to predict long time scale complex dynamical evolution of fusion plasmas etc. Solving these key problems will lay a solid scientific foundation for designing and operating future fusion reactors as well as promote the development of plasma science.
      通信作者: 万宝年, bnwan@ipp.ac.cn
    • 基金项目: 安徽省自然科学基金(批准号: 2208085J39)和国家自然科学基金(批准号: 12275236)资助的课题.
      Corresponding author: Wan Bao-Nian, bnwan@ipp.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 2208085J39) and the National Natural Science Foundation of China (Grant No. 12275236).
    [1]

    Ongena J, Koch R, Wolf R, Zohm H 2016 Nat. Phys. 12 398Google Scholar

    [2]

    Wan B N, Xu G S 2023 Natl. Sci. Rev. 10 nwad217Google Scholar

    [3]

    Artsimovich L 1972 Nucl. Fusion 12 215Google Scholar

    [4]

    Wurzel S E, Hsu S C 2022 Phys. Plasmas 29 062103Google Scholar

    [5]

    Keilhacker M, Gibson A, Gormezano C, Lomas P, Thomas P, Watkins M, Andrew P, Balet B, Borba D, Challis C 1999 Nucl. Fusion 39 209Google Scholar

    [6]

    Hawryluk R 1998 Rev. Mod. Phys. 70 537Google Scholar

    [7]

    ITER-team 2001 ITER EDA Documentation Series No. 22: Summary of the ITER Final Design Report Report

    [8]

    EUROfusion 2018 European Research Roadmap to the Realisation LONG VERSION of Fusion Energy Report

    [9]

    National Academies of Sciences and Engineering and Medicine 2021 Bringing Fusion to the US Grid (Washington: The National Academies Press

    [10]

    Department for Energy Security & Net Zero 2023 Towards Fusion Energy 2023 - The Next Stage of the UK’s Fusion Energy Strategy Report

    [11]

    Hsu S C 2023 J. Fusion Energy 42 12Google Scholar

    [12]

    ITER-Organization 2018 ITER Research Plan within the Staged Approach (Level III - Provisional Version), ITER Technical Report ITR18003, Report

    [13]

    Wesson J, Campbell D J 2011 Tokamaks (Vol. 149) (Oxford University Press

    [14]

    Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Control. Fusion 26 209Google Scholar

    [15]

    Strait E 1994 Phys. Plasmas 1 1415Google Scholar

    [16]

    ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175Google Scholar

    [17]

    Heidbrink W 2008 Phys. Plasmas 15 055501Google Scholar

    [18]

    Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27Google Scholar

    [19]

    Gormezano C, Sips A, Luce T, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M, Oikawa T 2007 Nucl. Fusion 47 S285Google Scholar

    [20]

    Fujita T, Ide S, Kamada Y, Suzuki T, Oikawa T, Takeji S, Sakamoto Y, Koide Y, Isayama A, Hatae T 2001 Phys. Rev. Lett. 87 085001Google Scholar

    [21]

    Loarte A, Lipschultz B, Kukushkin A 2007 Nucl. Fusion 47 S203Google Scholar

    [22]

    Eich T, Leonard A, Pitts R, Fundamenski W, Goldston R J, Gray T, Herrmann A, Kirk A, Kallenbach A, Kardaun O 2013 Nucl. Fusion 53 093031Google Scholar

    [23]

    Sips A, Giruzzi G, Ide S, Kessel C, Luce T, Snipes J, Stober J 2015 Phys. Plasmas 22 021804Google Scholar

    [24]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G v 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [25]

    Shaing K C, Crume Jr E 1989 Phys. Rev. Lett. 63 2369Google Scholar

    [26]

    Diamond P H, Liang Y M, Carreras B A, Terry P W 1994 Phys. Rev. Lett. 72 2565Google Scholar

    [27]

    Doyle E, Houlberg W, Kamada Y, Mukhovatov V, Osborne T, Polevoi A, Bateman G, Connor J, Cordey J, Fujita T 2007 Nucl. Fusion 47 S18Google Scholar

    [28]

    Creely A, Brunner D, Mumgaard R, Reinke M, Segal M, Sorbom B, Greenwald M 2023 Phys. Plasmas 30 090601Google Scholar

    [29]

    Chang Z, Callen J D, Fredrickson E D, Budny R V, Hegna C C, McGuire K M, Zarnstorff M C, TFTR Group 1995 Phys. Rev. Lett. 74 4663Google Scholar

    [30]

    Hender T, Wesley J, Bialek J, Bondeson A, Boozer A, Buttery R, Garofalo A, Goodman T, Granetz R, Gribov Y 2007 Nucl. Fusion 47 S128Google Scholar

    [31]

    Solomon W, Politzer P, Buttery R, Holcomb C, Ferron J, Garofalo A, Grierson B, Hanson J, In Y, Jackson G 2013 Nucl. Fusion 53 093033Google Scholar

    [32]

    Porcelli F, Boucher D, Rosenbluth M 1996 Plasma Phys. Control. Fusion 38 2163Google Scholar

    [33]

    De Vries P, Johnson M, Alper B, Buratti P, Hender T, Koslowski H, Riccardo V, Contributors J E 2011 Nucl. Fusion 51 053018Google Scholar

    [34]

    La Haye R 2006 Phys. Plasmas 13 055501Google Scholar

    [35]

    Poli F M, Fredrickson E, Henderson M A, Kim S-H, Bertelli N, Poli E, Farina D, Figini L 2018 Nucl. Fusion 58 016007Google Scholar

    [36]

    Wang X G, Zhang X D, Yu Q Q, Wu B, Zhu S Z, Wang J F, Zhang Y, Wang X J 2015 Nucl. Fusion 55 093024Google Scholar

    [37]

    Reiman A, Fisch N 2018 Phys. Rev. Lett. 121 225001Google Scholar

    [38]

    Liu T, Wang Z X, Wei L, Wang J L, Reiman A 2024 Nucl. Fusion 64 036001Google Scholar

    [39]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105Google Scholar

    [40]

    Loarte A, Saibene G, Sartori R, Campbell D, Becoulet M, Horton L, Eich T, Herrmann A, Matthews G, Asakura N 2003 Plasma Phys. Control. Fusion 45 1549Google Scholar

    [41]

    Evans T, Moyer R, Thomas P, Watkins J, Osborne T, Boedo J, Doyle E, Fenstermacher M, Finken K, Groebner R 2004 Phys. Rev. Lett. 92 235003Google Scholar

    [42]

    Sun Y W, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B N 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [43]

    Liang Y, Koslowski H, Thomas P, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Bécoulet M 2007 Phys. Rev. Lett. 98 265004Google Scholar

    [44]

    Hawryluk R, Campbell D, Janeschitz G, Thomas P, Albanese R, Ambrosino R, Bachmann C, Baylor L, Becoulet M, Benfatto I 2009 Nucl. Fusion 49 065012Google Scholar

    [45]

    Murakami M, Greenfield C, Wade M, Luce T, Ferron J, St John H, Makowski M, Austin M, Allen S, Brennan D 2005 Nucl. Fusion 45 1419Google Scholar

    [46]

    Goniche M, Dumont R, Bourdelle C, Decker J, Delpech L, Ekedahl A, Guilhem D, Litaudon X, Lotte P, Maget P 2014 AIP Conf. Proc. pp41–48Google Scholar

    [47]

    Wan B N, Liang Y, Gong X Z, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zeng L, Zhang L, Zhang X J, the EAST team and Collaborators 2019 Nucl. Fusion 59 112003Google Scholar

    [48]

    Wan B N 2020 Chin. Phys. Lett. 37 045202Google Scholar

    [49]

    Hinton F, Hazeltine R D 1976 Rev. Mod. Phys. 48 239Google Scholar

    [50]

    Kikuchi M 1990 Nucl. Fusion 30 265Google Scholar

    [51]

    Fujita T, Ide S, Shirai H, Kikuchi M, Naito O, Koide Y, Takeji S, Kubo H, Ishida S 1997 Phys. Rev. Lett. 78 2377Google Scholar

    [52]

    Kikuchi M, Azumi M 2012 Rev. Mod. Phys. 84 1807Google Scholar

    [53]

    Turnbull A, Taylor T, Lin-Liu Y, John H S 1995 Phys. Rev. Lett. 74 718Google Scholar

    [54]

    Strait E, Lao L, Mauel M, Rice B, Taylor T, Burrell K, Chu M, Lazarus E, Osborne T, Thompson S 1995 Phys. Rev. Lett. 75 4421Google Scholar

    [55]

    Politzer P, Hyatt A, Luce T, Perkins F, Prater R, Turnbull A, Brennan D, Ferron J, Greenfield C, Jayakumar J 2005 Nucl. Fusion 45 417Google Scholar

    [56]

    Garofalo A, Doyle E, Ferron J, Greenfield C, Groebner R, Hyatt A, Jackson G, Jayakumar R, Kinsey J, La Haye R 2006 Phys. Plasmas 13 056110Google Scholar

    [57]

    Coda S, Sauter O, Henderson M, Goodman T 2008 Proceedings of the 22nd IAEA Fusion Energy Conference pEX/2-3

    [58]

    Beer M A, Hammett G, Rewoldt G, Synakowski E, Zarnstorff M, Dorland W 1997 Phys. Plasmas 4 1792Google Scholar

    [59]

    Eriksson L G, Fourment C, Fuchs V, Litaudon X, Challis C D, Crisanti F, Esposito B, Garbet X, Giroud C, Hawkes N, Maget P, Mazon D, Tresset G 2002 Phys. Rev. Lett. 88 145001Google Scholar

    [60]

    Bell R E, Levinton F M, Batha S H, Synakowski E J, Zarnstorff C M 1998 Phys. Rev. Lett. 81 1429Google Scholar

    [61]

    Burrell K 1997 Phys. Plasmas 4 1499Google Scholar

    [62]

    Diamond P H, Itoh S, Itoh K, Hahm T 2005 Plasma Phys. Control Fusion 47 R35Google Scholar

    [63]

    Diamond P, Lebedev V, Newman D, Carreras B, Hahm T, Tang W, Rewoldt G, Avinash K 1997 Phys. Rev. Lett. 78 1472Google Scholar

    [64]

    Lin Z, Hahm T S, Lee W, Tang W M, White R B 1998 Science 281 1835Google Scholar

    [65]

    Strait E, Taylor T, Turnbull A, Ferron J, Lao L, Rice B, Sauter O, Thompson S, Wróblewski D 1995 Phys. Rev. Lett. 74 2483Google Scholar

    [66]

    Reimerdes H, Garofalo A, Strait E, Buttery R, Chu M, In Y, Jackson G, La Haye R, Lanctot M, Liu Y 2009 Nucl. Fusion 49 115001Google Scholar

    [67]

    Chu M, Okabayashi M 2010 Plasma Phys. Control. Fusion 52 123001Google Scholar

    [68]

    Connor J, Fukuda T, Garbet X, Gormezano C, Mukhovatov V, Wakatani M 2004 Nucl. Fusion 44 R1Google Scholar

    [69]

    Li J, Guo H Y, Wan B N, Gong X Z, Liang Y F, Xu G S, Gan K F, Hu J S, Wang H Q, Wang L, Zhao Y P, Denner P, Jackson G L, Loarte A, Maingi R, Menard J E, Rack M, Zou X 2013 Nat. Phys. 9 817Google Scholar

    [70]

    Gruber O, Wolf R, Dux R, Fuchs C, Günter S, Kallenbach A, Lackner K, Maraschek M, McCarthy P, Meister H 1999 Phys. Rev. Lett. 83 1787Google Scholar

    [71]

    Luce T, Wade M, Politzer P, Allen S, Austin M, Baker D, Bray B, Brennan D, Burrell K, Casper T 2001 Nucl. Fusion 41 1585Google Scholar

    [72]

    Joffrin E, Wolf R, Alper B, Baranov Y, Challis C, de Baar M, Giroud C, Gowers C, Hawkes N, Hender T 2002 Plasma Phys. Control. Fusion 44 1203Google Scholar

    [73]

    Gao X, Zeng L, Wu M, Zhang T, Yang Y, Ming T, Zhu X, Wang Y, Liu H, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X, the EAST team 2020 Nucl. Fusion 60 102001Google Scholar

    [74]

    Petty C C, Kinsey J E, Holcomb C T, DeBoo J C, Doyle E J, Ferron J R, Garofalo A M, Hyatt A W, Jackson G L, Luce T C, Murakami M, Politzer P A, Reimerdes H 2016 Nucl. Fusion 56 016016Google Scholar

    [75]

    Hobirk J, Challis C, Kappatou A, Lerche E, Keeling D, King D, Aleiferis S, Alessi E, Angioni C, Auriemma F, JET Contributors 2023 Nucl. Fusion 63 112001Google Scholar

    [76]

    Siccinio M, Graves J, Kembleton R, Lux H, Maviglia F, Morris A, Morris J, Zohm H 2022 Fusion Eng. Des. 176 113047Google Scholar

    [77]

    Sun Y, Ma Q, Jia M, Gu S, Loarte A, Liang Y, Liu Y Q, Paz-Soldan C A, Wu X M, Xie P C, Ye C, Wang H H, Zhao J Q, Guo W, He K, Li Y. Y, Li G, Liu H, Qian J, Sheng H, Shi T, Wang Y M, Weisberg D, Wan B N, Zang Q, Zeng L, Zhang B, Zhang L, Zhang T, Zhou C, EAST Contributors 2021 Nucl. Fusion 61 106037Google Scholar

    [78]

    Burrell K, Austin M E, Brennan D, DeBoo J, Doyle E, Gohil P, Greenfield C, Groebner R, Lao L, Luce T 2002 Plasma Phys. Control. Fusion 44 A253Google Scholar

    [79]

    Whyte D, Hubbard A, Hughes J, Lipschultz B, Rice J, Marmar E, Greenwald M, Cziegler I, Dominguez A, Golfinopoulos T 2010 Nucl. Fusion 50 105005Google Scholar

    [80]

    Beurskens M, Schweinzer J, Angioni C, Burckhart A, Challis C, Chapman I, Fischer R, Flanagan J, Frassinetti L, Giroud C 2013 Plasma Phys. Control. Fusion 55 124043Google Scholar

    [81]

    Challis C D, Garcia J, Beurskens M, Buratti P, Delabie E, Drewelow P, Frassinetti L, Giroud C, Hawkes N, Hobirk J, Joffrin E, Keeling D, King D B, Maggi C F, Mailloux J, Marchetto C, McDonald D, Nunes I, Pucella G, Saarelma S, Simpson J, JET Contributors 2015 Nucl. Fusion 55 053031Google Scholar

    [82]

    Loarte A, Pitts R, Wauters T, Nunes I, Köchl F, Polevoi A, Kim S, Lehnen M, Schneider M, Zabeo L 2024 Initial evaluations in support of the new ITER Baseline and Research Plan, ITER Technical Report ITR-24-004, Report

    [83]

    Zhang Y N, He K Y, Sun Y W, Wan B N, Wu X M, Xie P C, Liu Y Q 2024 Nucl. Fusion 64 046012Google Scholar

    [84]

    Giruzzi G, Yoshida M, Aiba N, Artaud J, Ayllon-Guerola J, Beeke O, Bierwage A, Bolzonella T, Bonotto M, Boulbe C 2019 Plasma Phys. Control. Fusion 62 014009Google Scholar

    [85]

    Poli F M 2018 Phys. Plasmas 25 055602Google Scholar

    [86]

    Staebler G M, Knolker M, Snyder P, Angioni C, Fable E, Luda T, Bourdelle C, Garcia J, Citrin J, Marin M 2022 Nucl. Fusion 62 042005Google Scholar

    [87]

    Ye L, Xu Y, Xiao X, Dai Z, Wang S 2016 J. Comput. Phys. 316 180Google Scholar

    [88]

    Wang S J, Wang Z H, Wu T N 2024 Phys. Rev. Lett. 132 065106Google Scholar

    [89]

    Kolesnichenko Y I, Oraevskii V 1967 Soviet At. Energy 23 1028Google Scholar

    [90]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [91]

    Fasoli A, Gormenzano C, Berk H, Breizman B, Briguglio S, Darrow D, Gorelenkov N, Heidbrink W, Jaun A, Konovalov S 2007 Nucl. Fusion 47 S264Google Scholar

    [92]

    Nazikian R, Fu G Y, Batha S H, Bell M G, Bell R E, Budny R V, Bush C E, Chang Z, Chen Y, Cheng C Z, Darrow D S, Efthimion P C, Fredrickson E D, Gorelenkov N N, Leblanc B, Levinton F M, Majeski R, Mazzucato E, Medley S S, Park H K, Petrov M P, Spong D A, Strachan J D, Synakowski E J, Taylor G, Von Goeler S, White R B, Wong K L, Zweben S J 1997 Phys. Rev. Lett. 78 2976Google Scholar

    [93]

    ITER EDA 1999 Nucl. Fusion 39 2471Google Scholar

    [94]

    Wei S Z, Wang T, Chen L, Zonca F, Qiu Z Y 2022 Nucl. Fusion 62 126038Google Scholar

    [95]

    Chen L, White R, Rosenbluth M 1984 Phys. Rev. Lett. 52 1122Google Scholar

    [96]

    McGuire K, Goldston R, Bell M, Bitter M, Bol K, Brau K, Buchenauer D, Crowley T, Davis S, Dylla F 1983 Phys. Rev. Lett. 50 891Google Scholar

    [97]

    Chen L, Hasegawa A 1974 Phys. Fluids 17 1399Google Scholar

    [98]

    Grad H 1969 Phys. Today 22 34Google Scholar

    [99]

    Cheng C, Chen L, Chance M 1985 Ann. Phys. 161 21Google Scholar

    [100]

    Tsai S T, Chen L 1993 Phys. Fluids B 5 3284Google Scholar

    [101]

    Chen L 1999 J. Geophys. Res. Space Phys. 104 2421Google Scholar

    [102]

    Chen L, Zonca F 2007 Nucl. Fusion 47 S727Google Scholar

    [103]

    Bao J, Zhang W L, Li D, Lin Z, Dong G, Liu C, Xie H S, Meng G, Cheng J Y, Dong C, Cao J T 2023 Nucl. Fusion 63 076021Google Scholar

    [104]

    Fu G, Van Dam J 1989 Phys. Fluids B 1 1949Google Scholar

    [105]

    Falessi M V, Chen L, Qiu Z Y, Zonca F 2023 New J. Phys. 25 123035Google Scholar

    [106]

    Wang T, Qiu Z Y, Zonca F, Briguglio S, Fogaccia G, Vlad G, Wang X 2018 Phys. Plasmas 25 062509Google Scholar

    [107]

    Wang T, Wang X, Briguglio S, Qiu Z Y, Vlad G, Zonca F 2019 Phys. Plasmas 26 012504Google Scholar

    [108]

    O'neil T, Malmberg J 1968 Phys. Fluids 11 1754Google Scholar

    [109]

    Berk H, Breizman B 1990 Phys. Fluids B 2 2235Google Scholar

    [110]

    Qiu Z Y, Chen L, Zonca F 2023 Rev. Mod. Plasma Phys. 7 28Google Scholar

    [111]

    Chen L, Zonca F 2012 Phys. Rev. Lett. 109 145002Google Scholar

    [112]

    Qiu Z Y, Chen L, Zonca F 2017 Nucl. Fusion 57 056017Google Scholar

    [113]

    Qiu Z Y, Chen L, Zonca F 2016 Nucl. Fusion 56 106013Google Scholar

    [114]

    Qiu Z Y, Chen L, Zonca F, Chen W 2019 Nucl. Fusion 59 066031Google Scholar

    [115]

    Spong D, Carreras B, Hedrick C 1994 Phys. Plasmas 1 1503Google Scholar

    [116]

    Hahm T, Chen L 1995 Phys. Rev. Lett. 74 266Google Scholar

    [117]

    Qiu Z Y, Chen L, Zonca F 2019 Nucl. Fusion 59 066024Google Scholar

    [118]

    Chen L, Qiu Z Y, Zonca F 2023 Nucl. Fusion 63 106016Google Scholar

    [119]

    Chen L, Qiu Z Y, Zonca F 2022 Nucl. Fusion 62 094001Google Scholar

    [120]

    Qiu Z Y, Chen L, Zonca F, Chen W 2018 Phys. Rev. Lett. 120 135001Google Scholar

    [121]

    Lang J, Fu G 2011 Phys. Plasmas 18 055902Google Scholar

    [122]

    Di Siena A, Görler T, Poli E, Navarro A B, Biancalani A, Jenko F 2019 Nucl. Fusion 59 124001Google Scholar

    [123]

    Mazzi S, Garcia J, Zarzoso D, Kazakov Y O, Ongena J, Dreval M, Nocente M, Štancar Ž, Szepesi G, Eriksson J, Sahlberg A, Benkadda S, JET Contributors 2022 Nat. Phys. 18 776Google Scholar

    [124]

    Zhang W L, Lin Z H, Chen L 2008 Phys. Rev. Lett. 101 095001Google Scholar

    [125]

    Garcia J, Challis C, Citrin J, Doerk H, Giruzzi G, Görler T, Jenko F, Maget P, Contributors J 2015 Nucl. Fusion 55 053007Google Scholar

    [126]

    Han H, Park S J, Sung C, Kang J, Lee Y H, Chung J, Hahm T S, Kim B, Park J K, Bak J G, Cha M S, Choi G J, Choi M J, Gwak J, Hahn S H, Jang J, Lee K C, Kim J H, Kim S K, Kim W C, Ko J, Ko W H, Lee C Y, Lee J H, Lee J H, Lee J K, Lee J P, Lee K D, Park Y S, Seo J, Yang S M, Yoon S W, Na Y S 2022 Nature 609 269Google Scholar

    [127]

    Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D, Hogeweij G, Johnson T 2014 Plasma Phys. Control. Fusion 57 014032Google Scholar

    [128]

    Hasegawa A, Chen L 1976 Phys. Fluids 19 1924Google Scholar

    [129]

    Duan X R, Xu M, Zhong W L, Liu Y, Song X M, Liu D Q, Wang Y Q, Lu B, Shi Z B, Zheng G Y, HL-2A/HL-2M Team 2022 Nucl. Fusion 62 042020Google Scholar

  • 图 A1  托卡马克装置磁位型

    Fig. A1.  Magnetic field configuration of a tokamak.

    图 1  托卡马克聚变堆运行的归一化参数区($q_{95}^{-1},\beta_{\rm N} $)示意图, 其中不同曲线代表一个理想的聚变堆需要满足的不同等离子体物理限制条件的示意分布, 如最低聚变功率需求(蓝色曲线), 稳定性极限限制(红色曲线), 最低聚变增益因子需求限制(绿色曲线)和高能量粒子约束限制(紫色曲线), 以及其他一些限制条件(灰色虚线)等

    Fig. 1.  A schematic plot of operational window of a tokamak fusion reactor in terms of normalized parameters ($q_{95}^{-1},\beta_{\rm N}$). Different constraints from plasma physics for a fusion reactor, e.g. threshold fusion power (blue curve), stability limit (red curve), threshold fusion gain (green curve), limits from a particle confinement (purple curve), and some other constraints (gray dashed curves) etc.

    图 2  感应(红色)、混合(绿色)和稳态(蓝色)运行方案的q分布(实线)和压力分布(虚线)示意图

    Fig. 2.  A schematic plot of q (solid lines) and pressure (dashed lines) profiles for inductive (red), hybrid (green) and steady state (blue) scenarios.

    图 3  ITER混合运行模式下阿尔芬连续谱和不稳定性示意图, 其中, 横坐标是归一化的径向位置, 纵坐标是频率, 虚线为安全因子分布, EPM表示高能量粒子模, TAE表示环阿尔芬本征模, EAE表示椭圆形变诱发阿尔芬本征模, NAE表示三角形变诱发阿尔芬本征模, 此处取环向模数n = 10

    Fig. 3.  A schematic plot of shear Alfvén wave continuous spectrum and associated instabilities of ITER hybrid scenario is presented. Here, the horizontal axis represents the normalized minor radius, and the vertical axis is the normalized frequency. The dashed curve corresponds to the q-profile, and a representative toroidal mode number n = 10 is adopted. The frequencies and mode localizations of energetic particle mode (EPM), toroidal Alfvén eigenmode (TAE), ellipticity induced Alfvén eigenmode (EAE) and non-circularity induced Alfvén eigenmode (NAE) are also given.

    Baidu
  • [1]

    Ongena J, Koch R, Wolf R, Zohm H 2016 Nat. Phys. 12 398Google Scholar

    [2]

    Wan B N, Xu G S 2023 Natl. Sci. Rev. 10 nwad217Google Scholar

    [3]

    Artsimovich L 1972 Nucl. Fusion 12 215Google Scholar

    [4]

    Wurzel S E, Hsu S C 2022 Phys. Plasmas 29 062103Google Scholar

    [5]

    Keilhacker M, Gibson A, Gormezano C, Lomas P, Thomas P, Watkins M, Andrew P, Balet B, Borba D, Challis C 1999 Nucl. Fusion 39 209Google Scholar

    [6]

    Hawryluk R 1998 Rev. Mod. Phys. 70 537Google Scholar

    [7]

    ITER-team 2001 ITER EDA Documentation Series No. 22: Summary of the ITER Final Design Report Report

    [8]

    EUROfusion 2018 European Research Roadmap to the Realisation LONG VERSION of Fusion Energy Report

    [9]

    National Academies of Sciences and Engineering and Medicine 2021 Bringing Fusion to the US Grid (Washington: The National Academies Press

    [10]

    Department for Energy Security & Net Zero 2023 Towards Fusion Energy 2023 - The Next Stage of the UK’s Fusion Energy Strategy Report

    [11]

    Hsu S C 2023 J. Fusion Energy 42 12Google Scholar

    [12]

    ITER-Organization 2018 ITER Research Plan within the Staged Approach (Level III - Provisional Version), ITER Technical Report ITR18003, Report

    [13]

    Wesson J, Campbell D J 2011 Tokamaks (Vol. 149) (Oxford University Press

    [14]

    Troyon F, Gruber R, Saurenmann H, Semenzato S, Succi S 1984 Plasma Phys. Control. Fusion 26 209Google Scholar

    [15]

    Strait E 1994 Phys. Plasmas 1 1415Google Scholar

    [16]

    ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2175Google Scholar

    [17]

    Heidbrink W 2008 Phys. Plasmas 15 055501Google Scholar

    [18]

    Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27Google Scholar

    [19]

    Gormezano C, Sips A, Luce T, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M, Oikawa T 2007 Nucl. Fusion 47 S285Google Scholar

    [20]

    Fujita T, Ide S, Kamada Y, Suzuki T, Oikawa T, Takeji S, Sakamoto Y, Koide Y, Isayama A, Hatae T 2001 Phys. Rev. Lett. 87 085001Google Scholar

    [21]

    Loarte A, Lipschultz B, Kukushkin A 2007 Nucl. Fusion 47 S203Google Scholar

    [22]

    Eich T, Leonard A, Pitts R, Fundamenski W, Goldston R J, Gray T, Herrmann A, Kirk A, Kallenbach A, Kardaun O 2013 Nucl. Fusion 53 093031Google Scholar

    [23]

    Sips A, Giruzzi G, Ide S, Kessel C, Luce T, Snipes J, Stober J 2015 Phys. Plasmas 22 021804Google Scholar

    [24]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G v 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [25]

    Shaing K C, Crume Jr E 1989 Phys. Rev. Lett. 63 2369Google Scholar

    [26]

    Diamond P H, Liang Y M, Carreras B A, Terry P W 1994 Phys. Rev. Lett. 72 2565Google Scholar

    [27]

    Doyle E, Houlberg W, Kamada Y, Mukhovatov V, Osborne T, Polevoi A, Bateman G, Connor J, Cordey J, Fujita T 2007 Nucl. Fusion 47 S18Google Scholar

    [28]

    Creely A, Brunner D, Mumgaard R, Reinke M, Segal M, Sorbom B, Greenwald M 2023 Phys. Plasmas 30 090601Google Scholar

    [29]

    Chang Z, Callen J D, Fredrickson E D, Budny R V, Hegna C C, McGuire K M, Zarnstorff M C, TFTR Group 1995 Phys. Rev. Lett. 74 4663Google Scholar

    [30]

    Hender T, Wesley J, Bialek J, Bondeson A, Boozer A, Buttery R, Garofalo A, Goodman T, Granetz R, Gribov Y 2007 Nucl. Fusion 47 S128Google Scholar

    [31]

    Solomon W, Politzer P, Buttery R, Holcomb C, Ferron J, Garofalo A, Grierson B, Hanson J, In Y, Jackson G 2013 Nucl. Fusion 53 093033Google Scholar

    [32]

    Porcelli F, Boucher D, Rosenbluth M 1996 Plasma Phys. Control. Fusion 38 2163Google Scholar

    [33]

    De Vries P, Johnson M, Alper B, Buratti P, Hender T, Koslowski H, Riccardo V, Contributors J E 2011 Nucl. Fusion 51 053018Google Scholar

    [34]

    La Haye R 2006 Phys. Plasmas 13 055501Google Scholar

    [35]

    Poli F M, Fredrickson E, Henderson M A, Kim S-H, Bertelli N, Poli E, Farina D, Figini L 2018 Nucl. Fusion 58 016007Google Scholar

    [36]

    Wang X G, Zhang X D, Yu Q Q, Wu B, Zhu S Z, Wang J F, Zhang Y, Wang X J 2015 Nucl. Fusion 55 093024Google Scholar

    [37]

    Reiman A, Fisch N 2018 Phys. Rev. Lett. 121 225001Google Scholar

    [38]

    Liu T, Wang Z X, Wei L, Wang J L, Reiman A 2024 Nucl. Fusion 64 036001Google Scholar

    [39]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105Google Scholar

    [40]

    Loarte A, Saibene G, Sartori R, Campbell D, Becoulet M, Horton L, Eich T, Herrmann A, Matthews G, Asakura N 2003 Plasma Phys. Control. Fusion 45 1549Google Scholar

    [41]

    Evans T, Moyer R, Thomas P, Watkins J, Osborne T, Boedo J, Doyle E, Fenstermacher M, Finken K, Groebner R 2004 Phys. Rev. Lett. 92 235003Google Scholar

    [42]

    Sun Y W, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B N 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [43]

    Liang Y, Koslowski H, Thomas P, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Bécoulet M 2007 Phys. Rev. Lett. 98 265004Google Scholar

    [44]

    Hawryluk R, Campbell D, Janeschitz G, Thomas P, Albanese R, Ambrosino R, Bachmann C, Baylor L, Becoulet M, Benfatto I 2009 Nucl. Fusion 49 065012Google Scholar

    [45]

    Murakami M, Greenfield C, Wade M, Luce T, Ferron J, St John H, Makowski M, Austin M, Allen S, Brennan D 2005 Nucl. Fusion 45 1419Google Scholar

    [46]

    Goniche M, Dumont R, Bourdelle C, Decker J, Delpech L, Ekedahl A, Guilhem D, Litaudon X, Lotte P, Maget P 2014 AIP Conf. Proc. pp41–48Google Scholar

    [47]

    Wan B N, Liang Y, Gong X Z, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zeng L, Zhang L, Zhang X J, the EAST team and Collaborators 2019 Nucl. Fusion 59 112003Google Scholar

    [48]

    Wan B N 2020 Chin. Phys. Lett. 37 045202Google Scholar

    [49]

    Hinton F, Hazeltine R D 1976 Rev. Mod. Phys. 48 239Google Scholar

    [50]

    Kikuchi M 1990 Nucl. Fusion 30 265Google Scholar

    [51]

    Fujita T, Ide S, Shirai H, Kikuchi M, Naito O, Koide Y, Takeji S, Kubo H, Ishida S 1997 Phys. Rev. Lett. 78 2377Google Scholar

    [52]

    Kikuchi M, Azumi M 2012 Rev. Mod. Phys. 84 1807Google Scholar

    [53]

    Turnbull A, Taylor T, Lin-Liu Y, John H S 1995 Phys. Rev. Lett. 74 718Google Scholar

    [54]

    Strait E, Lao L, Mauel M, Rice B, Taylor T, Burrell K, Chu M, Lazarus E, Osborne T, Thompson S 1995 Phys. Rev. Lett. 75 4421Google Scholar

    [55]

    Politzer P, Hyatt A, Luce T, Perkins F, Prater R, Turnbull A, Brennan D, Ferron J, Greenfield C, Jayakumar J 2005 Nucl. Fusion 45 417Google Scholar

    [56]

    Garofalo A, Doyle E, Ferron J, Greenfield C, Groebner R, Hyatt A, Jackson G, Jayakumar R, Kinsey J, La Haye R 2006 Phys. Plasmas 13 056110Google Scholar

    [57]

    Coda S, Sauter O, Henderson M, Goodman T 2008 Proceedings of the 22nd IAEA Fusion Energy Conference pEX/2-3

    [58]

    Beer M A, Hammett G, Rewoldt G, Synakowski E, Zarnstorff M, Dorland W 1997 Phys. Plasmas 4 1792Google Scholar

    [59]

    Eriksson L G, Fourment C, Fuchs V, Litaudon X, Challis C D, Crisanti F, Esposito B, Garbet X, Giroud C, Hawkes N, Maget P, Mazon D, Tresset G 2002 Phys. Rev. Lett. 88 145001Google Scholar

    [60]

    Bell R E, Levinton F M, Batha S H, Synakowski E J, Zarnstorff C M 1998 Phys. Rev. Lett. 81 1429Google Scholar

    [61]

    Burrell K 1997 Phys. Plasmas 4 1499Google Scholar

    [62]

    Diamond P H, Itoh S, Itoh K, Hahm T 2005 Plasma Phys. Control Fusion 47 R35Google Scholar

    [63]

    Diamond P, Lebedev V, Newman D, Carreras B, Hahm T, Tang W, Rewoldt G, Avinash K 1997 Phys. Rev. Lett. 78 1472Google Scholar

    [64]

    Lin Z, Hahm T S, Lee W, Tang W M, White R B 1998 Science 281 1835Google Scholar

    [65]

    Strait E, Taylor T, Turnbull A, Ferron J, Lao L, Rice B, Sauter O, Thompson S, Wróblewski D 1995 Phys. Rev. Lett. 74 2483Google Scholar

    [66]

    Reimerdes H, Garofalo A, Strait E, Buttery R, Chu M, In Y, Jackson G, La Haye R, Lanctot M, Liu Y 2009 Nucl. Fusion 49 115001Google Scholar

    [67]

    Chu M, Okabayashi M 2010 Plasma Phys. Control. Fusion 52 123001Google Scholar

    [68]

    Connor J, Fukuda T, Garbet X, Gormezano C, Mukhovatov V, Wakatani M 2004 Nucl. Fusion 44 R1Google Scholar

    [69]

    Li J, Guo H Y, Wan B N, Gong X Z, Liang Y F, Xu G S, Gan K F, Hu J S, Wang H Q, Wang L, Zhao Y P, Denner P, Jackson G L, Loarte A, Maingi R, Menard J E, Rack M, Zou X 2013 Nat. Phys. 9 817Google Scholar

    [70]

    Gruber O, Wolf R, Dux R, Fuchs C, Günter S, Kallenbach A, Lackner K, Maraschek M, McCarthy P, Meister H 1999 Phys. Rev. Lett. 83 1787Google Scholar

    [71]

    Luce T, Wade M, Politzer P, Allen S, Austin M, Baker D, Bray B, Brennan D, Burrell K, Casper T 2001 Nucl. Fusion 41 1585Google Scholar

    [72]

    Joffrin E, Wolf R, Alper B, Baranov Y, Challis C, de Baar M, Giroud C, Gowers C, Hawkes N, Hender T 2002 Plasma Phys. Control. Fusion 44 1203Google Scholar

    [73]

    Gao X, Zeng L, Wu M, Zhang T, Yang Y, Ming T, Zhu X, Wang Y, Liu H, Zang Q, Li G Q, Huang J, Gong X Z, Li Y Y, Li J G, Wan Y X, the EAST team 2020 Nucl. Fusion 60 102001Google Scholar

    [74]

    Petty C C, Kinsey J E, Holcomb C T, DeBoo J C, Doyle E J, Ferron J R, Garofalo A M, Hyatt A W, Jackson G L, Luce T C, Murakami M, Politzer P A, Reimerdes H 2016 Nucl. Fusion 56 016016Google Scholar

    [75]

    Hobirk J, Challis C, Kappatou A, Lerche E, Keeling D, King D, Aleiferis S, Alessi E, Angioni C, Auriemma F, JET Contributors 2023 Nucl. Fusion 63 112001Google Scholar

    [76]

    Siccinio M, Graves J, Kembleton R, Lux H, Maviglia F, Morris A, Morris J, Zohm H 2022 Fusion Eng. Des. 176 113047Google Scholar

    [77]

    Sun Y, Ma Q, Jia M, Gu S, Loarte A, Liang Y, Liu Y Q, Paz-Soldan C A, Wu X M, Xie P C, Ye C, Wang H H, Zhao J Q, Guo W, He K, Li Y. Y, Li G, Liu H, Qian J, Sheng H, Shi T, Wang Y M, Weisberg D, Wan B N, Zang Q, Zeng L, Zhang B, Zhang L, Zhang T, Zhou C, EAST Contributors 2021 Nucl. Fusion 61 106037Google Scholar

    [78]

    Burrell K, Austin M E, Brennan D, DeBoo J, Doyle E, Gohil P, Greenfield C, Groebner R, Lao L, Luce T 2002 Plasma Phys. Control. Fusion 44 A253Google Scholar

    [79]

    Whyte D, Hubbard A, Hughes J, Lipschultz B, Rice J, Marmar E, Greenwald M, Cziegler I, Dominguez A, Golfinopoulos T 2010 Nucl. Fusion 50 105005Google Scholar

    [80]

    Beurskens M, Schweinzer J, Angioni C, Burckhart A, Challis C, Chapman I, Fischer R, Flanagan J, Frassinetti L, Giroud C 2013 Plasma Phys. Control. Fusion 55 124043Google Scholar

    [81]

    Challis C D, Garcia J, Beurskens M, Buratti P, Delabie E, Drewelow P, Frassinetti L, Giroud C, Hawkes N, Hobirk J, Joffrin E, Keeling D, King D B, Maggi C F, Mailloux J, Marchetto C, McDonald D, Nunes I, Pucella G, Saarelma S, Simpson J, JET Contributors 2015 Nucl. Fusion 55 053031Google Scholar

    [82]

    Loarte A, Pitts R, Wauters T, Nunes I, Köchl F, Polevoi A, Kim S, Lehnen M, Schneider M, Zabeo L 2024 Initial evaluations in support of the new ITER Baseline and Research Plan, ITER Technical Report ITR-24-004, Report

    [83]

    Zhang Y N, He K Y, Sun Y W, Wan B N, Wu X M, Xie P C, Liu Y Q 2024 Nucl. Fusion 64 046012Google Scholar

    [84]

    Giruzzi G, Yoshida M, Aiba N, Artaud J, Ayllon-Guerola J, Beeke O, Bierwage A, Bolzonella T, Bonotto M, Boulbe C 2019 Plasma Phys. Control. Fusion 62 014009Google Scholar

    [85]

    Poli F M 2018 Phys. Plasmas 25 055602Google Scholar

    [86]

    Staebler G M, Knolker M, Snyder P, Angioni C, Fable E, Luda T, Bourdelle C, Garcia J, Citrin J, Marin M 2022 Nucl. Fusion 62 042005Google Scholar

    [87]

    Ye L, Xu Y, Xiao X, Dai Z, Wang S 2016 J. Comput. Phys. 316 180Google Scholar

    [88]

    Wang S J, Wang Z H, Wu T N 2024 Phys. Rev. Lett. 132 065106Google Scholar

    [89]

    Kolesnichenko Y I, Oraevskii V 1967 Soviet At. Energy 23 1028Google Scholar

    [90]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [91]

    Fasoli A, Gormenzano C, Berk H, Breizman B, Briguglio S, Darrow D, Gorelenkov N, Heidbrink W, Jaun A, Konovalov S 2007 Nucl. Fusion 47 S264Google Scholar

    [92]

    Nazikian R, Fu G Y, Batha S H, Bell M G, Bell R E, Budny R V, Bush C E, Chang Z, Chen Y, Cheng C Z, Darrow D S, Efthimion P C, Fredrickson E D, Gorelenkov N N, Leblanc B, Levinton F M, Majeski R, Mazzucato E, Medley S S, Park H K, Petrov M P, Spong D A, Strachan J D, Synakowski E J, Taylor G, Von Goeler S, White R B, Wong K L, Zweben S J 1997 Phys. Rev. Lett. 78 2976Google Scholar

    [93]

    ITER EDA 1999 Nucl. Fusion 39 2471Google Scholar

    [94]

    Wei S Z, Wang T, Chen L, Zonca F, Qiu Z Y 2022 Nucl. Fusion 62 126038Google Scholar

    [95]

    Chen L, White R, Rosenbluth M 1984 Phys. Rev. Lett. 52 1122Google Scholar

    [96]

    McGuire K, Goldston R, Bell M, Bitter M, Bol K, Brau K, Buchenauer D, Crowley T, Davis S, Dylla F 1983 Phys. Rev. Lett. 50 891Google Scholar

    [97]

    Chen L, Hasegawa A 1974 Phys. Fluids 17 1399Google Scholar

    [98]

    Grad H 1969 Phys. Today 22 34Google Scholar

    [99]

    Cheng C, Chen L, Chance M 1985 Ann. Phys. 161 21Google Scholar

    [100]

    Tsai S T, Chen L 1993 Phys. Fluids B 5 3284Google Scholar

    [101]

    Chen L 1999 J. Geophys. Res. Space Phys. 104 2421Google Scholar

    [102]

    Chen L, Zonca F 2007 Nucl. Fusion 47 S727Google Scholar

    [103]

    Bao J, Zhang W L, Li D, Lin Z, Dong G, Liu C, Xie H S, Meng G, Cheng J Y, Dong C, Cao J T 2023 Nucl. Fusion 63 076021Google Scholar

    [104]

    Fu G, Van Dam J 1989 Phys. Fluids B 1 1949Google Scholar

    [105]

    Falessi M V, Chen L, Qiu Z Y, Zonca F 2023 New J. Phys. 25 123035Google Scholar

    [106]

    Wang T, Qiu Z Y, Zonca F, Briguglio S, Fogaccia G, Vlad G, Wang X 2018 Phys. Plasmas 25 062509Google Scholar

    [107]

    Wang T, Wang X, Briguglio S, Qiu Z Y, Vlad G, Zonca F 2019 Phys. Plasmas 26 012504Google Scholar

    [108]

    O'neil T, Malmberg J 1968 Phys. Fluids 11 1754Google Scholar

    [109]

    Berk H, Breizman B 1990 Phys. Fluids B 2 2235Google Scholar

    [110]

    Qiu Z Y, Chen L, Zonca F 2023 Rev. Mod. Plasma Phys. 7 28Google Scholar

    [111]

    Chen L, Zonca F 2012 Phys. Rev. Lett. 109 145002Google Scholar

    [112]

    Qiu Z Y, Chen L, Zonca F 2017 Nucl. Fusion 57 056017Google Scholar

    [113]

    Qiu Z Y, Chen L, Zonca F 2016 Nucl. Fusion 56 106013Google Scholar

    [114]

    Qiu Z Y, Chen L, Zonca F, Chen W 2019 Nucl. Fusion 59 066031Google Scholar

    [115]

    Spong D, Carreras B, Hedrick C 1994 Phys. Plasmas 1 1503Google Scholar

    [116]

    Hahm T, Chen L 1995 Phys. Rev. Lett. 74 266Google Scholar

    [117]

    Qiu Z Y, Chen L, Zonca F 2019 Nucl. Fusion 59 066024Google Scholar

    [118]

    Chen L, Qiu Z Y, Zonca F 2023 Nucl. Fusion 63 106016Google Scholar

    [119]

    Chen L, Qiu Z Y, Zonca F 2022 Nucl. Fusion 62 094001Google Scholar

    [120]

    Qiu Z Y, Chen L, Zonca F, Chen W 2018 Phys. Rev. Lett. 120 135001Google Scholar

    [121]

    Lang J, Fu G 2011 Phys. Plasmas 18 055902Google Scholar

    [122]

    Di Siena A, Görler T, Poli E, Navarro A B, Biancalani A, Jenko F 2019 Nucl. Fusion 59 124001Google Scholar

    [123]

    Mazzi S, Garcia J, Zarzoso D, Kazakov Y O, Ongena J, Dreval M, Nocente M, Štancar Ž, Szepesi G, Eriksson J, Sahlberg A, Benkadda S, JET Contributors 2022 Nat. Phys. 18 776Google Scholar

    [124]

    Zhang W L, Lin Z H, Chen L 2008 Phys. Rev. Lett. 101 095001Google Scholar

    [125]

    Garcia J, Challis C, Citrin J, Doerk H, Giruzzi G, Görler T, Jenko F, Maget P, Contributors J 2015 Nucl. Fusion 55 053007Google Scholar

    [126]

    Han H, Park S J, Sung C, Kang J, Lee Y H, Chung J, Hahm T S, Kim B, Park J K, Bak J G, Cha M S, Choi G J, Choi M J, Gwak J, Hahn S H, Jang J, Lee K C, Kim J H, Kim S K, Kim W C, Ko J, Ko W H, Lee C Y, Lee J H, Lee J H, Lee J K, Lee J P, Lee K D, Park Y S, Seo J, Yang S M, Yoon S W, Na Y S 2022 Nature 609 269Google Scholar

    [127]

    Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D, Hogeweij G, Johnson T 2014 Plasma Phys. Control. Fusion 57 014032Google Scholar

    [128]

    Hasegawa A, Chen L 1976 Phys. Fluids 19 1924Google Scholar

    [129]

    Duan X R, Xu M, Zhong W L, Liu Y, Song X M, Liu D Q, Wang Y Q, Lu B, Shi Z B, Zheng G Y, HL-2A/HL-2M Team 2022 Nucl. Fusion 62 042020Google Scholar

  • [1] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响.  , 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动.  , 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [4] 郝保龙, 李颖颖, 陈伟, 郝广周, 顾翔, 孙恬恬, 王嵎民, 董家齐, 袁保山, 彭元凯, 石跃江, 谢华生, 刘敏胜, ENN TEAM. EXL-50U球形环中快离子磁场波纹损失的优化模拟研究.  , 2023, 72(21): 215215. doi: 10.7498/aps.72.20230749
    [5] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟.  , 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [6] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [7] 陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建. HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程.  , 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [8] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用.  , 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [9] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究.  , 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [10] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响.  , 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [11] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究.  , 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [12] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [13] 钟国强, 胡立群, 朱玉宝, 林士耀, 陈珏铨, 许平, 段艳敏, 卢洪伟. HT-7上氘等离子体放电时中子注量的测量与分析.  , 2009, 58(5): 3262-3267. doi: 10.7498/aps.58.3262
    [14] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究.  , 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [15] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究.  , 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [16] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动.  , 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [17] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运.  , 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [18] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究.  , 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [19] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究.  , 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [20] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析.  , 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
计量
  • 文章访问数:  884
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-14
  • 修回日期:  2024-08-05
  • 上网日期:  2024-08-19
  • 刊出日期:  2024-09-05

/

返回文章
返回
Baidu
map