搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浓度依赖的掺铕硅酸钇晶体的光学和自旋非均匀展宽

梁澎军 朱天翔 肖懿鑫 王奕洋 韩永建 周宗权 李传锋

引用本文:
Citation:

浓度依赖的掺铕硅酸钇晶体的光学和自旋非均匀展宽

梁澎军, 朱天翔, 肖懿鑫, 王奕洋, 韩永建, 周宗权, 李传锋

Concentration-dependent optical and spin inhomogeneous linewidth of europium-doped yttrium orthosilicate crystals

Liang Peng-Jun, Zhu Tian-Xiang, Xiao Yi-Xin, Wang Yi-Yang, Han Yong-Jian, Zhou Zong-Quan, Li Chuan-Feng
PDF
HTML
导出引用
  • 可移动量子存储器是实现长距离量子通信的一种可行方案, 该方案需要量子存储介质拥有小时量级的存储寿命. 同位素提纯151Eu3+:Y2SiO5晶体是实现这一应用的重要候选材料, 但其较宽的非均匀展宽对其光存储效率和自旋存储寿命都构成了显著限制. 本文自主生长了不同掺杂浓度的同位素提纯151Eu3+:Y2SiO5晶体, 讨论了影响非均匀展宽的机制和未来进一步控制非均匀展宽的方法, 为超长寿命可移动量子存储器的实现奠定了基础.
    The transportable quantum memory is a feasible solution for realizing the long-distance quantum communication, which requires a storage lifetime of the order of hours. The isotope-enriched 151Eu3+:Y2SiO5 crystal is a promising candidate for this application. However, its optical storage efficiency and spin storage lifetime are limited by the wide inhomogeneous linewidth. In this work, we successfully grow isotope-enriched 151Eu3+:Y2SiO5 crystals with varying doping concentrations by utilizing the Czochralski method. The optical inhomogeneous broadening and spin inhomogeneous broadening are measured by the optical absorption spectroscopy and optically detected magnetic resonance tests, respectively. Notably, in the undoped samples, we identify a baseline level of inhomogeneous linewidths, happening at (390 ± 15) MHz for optical inhomogeneous broadening and (4.6 ± 0.2) kHz for spin inhomogeneous broadening. Our findings reveal that the point defects, induced by the doping ions, significantly contribute to the inhomogeneous broadening. For every increase of 10–6 in doping concentration, the optical inhomogeneous broadening increases by 0.97 MHz, and the spin inhomogeneous broadening increases by 0.014 kHz. Furthermore, we discuss the influence of dislocations on inhomogeneous broadening and propose potential strategies to further mitigate these effects. These advancements are expected to promote the development of ultra-long-lifetime transportable quantum memory applications.
      通信作者: 周宗权, zq_zhou@ustc.edu.cn ; 李传锋, cfli@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304100)、科技创新2030——“量子通信与量子计算机”重大项目(批准号: 2021ZD0301200)和国家自然科学基金(批准号: 12222411, 11821404)资助的课题.
      Corresponding author: Zhou Zong-Quan, zq_zhou@ustc.edu.cn ; Li Chuan-Feng, cfli@ustc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304100), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301200), and the National Natural Science Foundation of China (Grant Nos. 12222411, 11821404).
    [1]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221Google Scholar

    [2]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [3]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [4]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [5]

    Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381Google Scholar

    [6]

    Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li B, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Science 356 1140Google Scholar

    [7]

    Lukin M D 2003 Rev. Mod. Phys. 75 457Google Scholar

    [8]

    Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar

    [9]

    Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [10]

    Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mücke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195Google Scholar

    [11]

    van Leent T, Bock M, Fertig F, Garthoff R, Eppelt S, Zhou Y, Malik P, Seubert M, Bauer T, Rosenfeld W, Zhang W, Becher C, Weinfurter H 2022 Nature 607 69Google Scholar

    [12]

    Pompili M, Hermans S L N, Baier S, Beukers H K C, Humphreys P C, Schouten R N, Vermeulen R F L, Tiggelman M J, dos Santos Martins L, Dirkse B, Wehner S, Hanson R 2021 Science 372 259Google Scholar

    [13]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [14]

    Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67Google Scholar

    [15]

    Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar

    [16]

    Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [17]

    Yu Y, Ma F, Luo X Y, Jing B, Sun P F, Fang R Z, Yang C W, Liu H, Zheng M Y, Xie X P, Zhang W J, You L X, Wang Z, Chen T Y, Zhang Q, Bao X H, Pan J W 2020 Nature 578 240Google Scholar

    [18]

    Julsgaard B, Sherson J, Cirac J I, Fiurášek J, Polzik E S 2004 Nature 432 482Google Scholar

    [19]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174Google Scholar

    [20]

    Chrapkiewicz R, Dąbrowski M, Wasilewski W 2017 Phys. Rev. Lett. 118 063603Google Scholar

    [21]

    Li H, Dou J P, Pang X L, Yang T H, Zhang C N, Chen Y, Li J M, Walmsley I A, Jin X M 2021 Optica 8 925Google Scholar

    [22]

    Ma L, Lei X, Yan J, Li R, Chai T, Yan Z, Jia X, Xie C, Peng K 2022 Nat. Commun. 13 2368Google Scholar

    [23]

    de Riedmatten H, Afzelius M, Staudt M U, Simon C, Gisin N 2008 Nature 456 773Google Scholar

    [24]

    Hedges M P, Longdell J J, Li Y, Sellars M J 2010 Nature 465 1052Google Scholar

    [25]

    Zhou Z Q, Lin W B, Yang M, Li C F, Guo G C 2012 Phys. Rev. Lett. 108 190505Google Scholar

    [26]

    Sabooni M, Li Q, Kröll S, Rippe L 2013 Phys. Rev. Lett. 110 133604Google Scholar

    [27]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, SunY N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652Google Scholar

    [28]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [29]

    Lago-Rivera D, Grandi S, Rakonjac J V, Seri A, de Riedmatten H 2021 Nature 594 37Google Scholar

    [30]

    Ortu A, Holzäpfel A, Etesse J, Afzelius M 2022 npj Quantum Inf. 8 29Google Scholar

    [31]

    Ma Y Z, Jin M, Chen D L, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 4378Google Scholar

    [32]

    Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41Google Scholar

    [33]

    Stuart J S, Hedges M, Ahlefeldt R, Sellars M 2021 Phys. Rev. Res. 3 L032054Google Scholar

    [34]

    Askarani M F, Das A, Davidson J H, Amaral G C, Sinclair N, Slater J A, Marzban S, Thiel C W, Cone R L, Oblak D, Tittel W 2021 Phys. Rev. Lett. 127 220502Google Scholar

    [35]

    Businger M, Tiranov A, Kaczmarek K T, Welinski S, Zhang Z, Ferrier A, Goldner P, Afzelius M 2020 Phys. Rev. Lett. 124 053606Google Scholar

    [36]

    Liu D C, Li P Y, Zhu T X, Zheng L, Huang J Y, Zhou Z Q, Li C F, Guo G C 2022 Phys. Rev. Lett. 129 210501Google Scholar

    [37]

    Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 260504Google Scholar

    [38]

    Zhu T X, Liu C, Jin M, Su M X, Liu Y P, Li W J, Ye Y, Zhou Z Q, Li C F, Guo G C 2022 Phys. Rev. Lett. 128 180501Google Scholar

    [39]

    Equall R W, Sun Y, Cone R L, Macfarlane R M 1994 Phys. Rev. Lett. 72 2179Google Scholar

    [40]

    Könz F, Sun Y, Thiel C W, Cone R L, Equall R W, Hutcheson R L, Macfarlane R M 2003 Phys. Rev. B 68 085109Google Scholar

    [41]

    Ma Y Z, Lv Y C, Yang T S, Ma Y, Zhou Z Q, Li C F, Guo G C 2023 Phys. Rev. B 107 014310Google Scholar

    [42]

    Stoneham A M 1969 Rev. Mod. Phys. 41 82Google Scholar

    [43]

    Ching W Y, Ouyang L, Xu Y N 2003 Phys. Rev. B 67 245108Google Scholar

    [44]

    Thorpe M J, Leibrandt D R, Rosenband T 2013 New J. Phys. 15 033006Google Scholar

    [45]

    Lauritzen B, Timoney N, Gisin N, Afzelius M, de Riedmatten H, Sun Y, Macfarlane R M, Cone R L 2012 Phys. Rev. B 85 115111Google Scholar

    [46]

    Lafitte-Houssat E, Ferrier A, Welinski S, Morvan L, Afzelius M, Berger P, Goldner P 2022 Opt. Mater. X 14 100153Google Scholar

    [47]

    Cardona M 2001 Solid State Commun. 121 7Google Scholar

    [48]

    Macfarlane R M, Cassanho A, Meltzer R S 1992 Phys. Rev. Lett. 69 542Google Scholar

    [49]

    Holt D B, Yacobi B G 2007 Characterization of Extended Defects in Semiconductors (Cambridge University Press) pp122–162

    [50]

    Oda O 2001 Encyclopedia of Materials: Science and Technology (Oxford: Elsevier) pp8374–8379

    [51]

    周宗权 2022 71 070305Google Scholar

    Zhou Z Q 2022 Acta Phys. Sin. 71 070305Google Scholar

  • 图 1  (a) Y2SiO5中替位1处的$ {{^{151}{\rm{Eu}}^{3+}}} $在磁场为0时7F0$ \rightarrow $5D0跃迁能级图. f0 = 516.8472 THz, f1 = f0 + 34.5 MHz, f2 = f0 – 20.9 MHz. (b)测试$ { |{\pm1/2}\rangle_{\mathrm{g}}\rightarrow|{\pm3/2}\rangle_{\mathrm{g}}} $自旋跃迁谱的脉冲时序. 准备阶段包括类清理和自旋极化过程, 脉冲频率与图(a)中的相同颜色箭头对应, 准备阶段所有脉冲都是时间宽度为1 ms, 扫频宽度为4 MHz的啁啾脉冲. 在准备阶段结束10 ms之后, 线圈产生一个时间宽度为1 ms的RF高斯脉冲. RF脉冲结束10 µs后, 一个啁啾型泵浦光脉冲被施加到样品上, 其时间宽度为1 ms, 扫频宽度为3.8 MHz. 泵浦光脉冲结束10 µs后, 光开关门被打开, 为单光子探测器提供一个2 ms的探测时间窗口. (c) Y2SiO5晶碇, 样品取自蓝框区域的晶体中心位置

    Fig. 1.  (a) Level structure of 7F0$ \rightarrow $5D0 transition for the $ {{^{151}{\rm{Eu}}^{3+}}} $ at site 1 in the Y2SiO5 under a zero magnetic field. f0 = 516.8472 THz, f1 = f0 + 34.5 MHz, f2 = f0 – 20.9 MHz. (b) Pulse sequence measuring the spin transition $ {|{\pm1/2}\rangle_{\mathrm{g}}\rightarrow|{\pm3/2}\rangle_{\mathrm{g}} } $. The preparation includes the process of class cleaning and polarization. The frequency of these pulses is corresponding to the frequency of the arrows of the same color in Fig (a). Every pulse during the preparation is a chirp pulse with a duration of 1 ms and a bandwidth of 4 MHz. A Gaussian pulse, with a duration of 1 ms, is generated by the Coil 10 ms later after the end of preparation. A chirp pulse, with a duration of 1 ms and a bandwidth of 3.8 MHz, is applied to the sample 10 µs later after the RF pulses. The gate is turned on, 10 µs later after the pumping pulse, to provide a 2 ms detection window for the single photon detector. (c) Y2SiO5 boule, and the sample is taken from the center of the crystal in the blue rectangular area.

    图 2  实验装置图. 580 nm激光(黄线)经过双次通过声光调制器(AOM)调制, 以控制其频率和强度. 调制后的激光脉冲通过低温恒温腔中的样品. 透过样品的激光通过光电探测器(PD)探测, 用于获得光学吸收谱. 同时, 样品在激光激发下的荧光(红线)经过偏振分束器(PBS)偏振滤波. 反向收集的荧光, 通过由两个声光调制器组成的光开关门, 进入单光子探测器(SPD). 线圈的激励射频信号由AWG产生, 并经射频放大器放大

    Fig. 2.  Diagram of experiment set-up. The 580 nm laser (yellow line) is modulated by a double-pass acousto-optic modulator (AOM) to control its frequency and intensity. The modulated laser pulse passes through the sample in a cryostat. The laser passing through the sample is detected by a photo detector (PD) to measure the absorption spectrum. At the same time, the fluorescence (red line) of the sample excited by the laser is filtered by a polarizing beam splitter (PBS). The fluorescence collected in the reverse direction enters a single-photon detector (SPD) through a gate consisting of two acousto-optic modulators. The radio-frequency excitation signal is generated by an AWG and amplified by a radio frequency amplifier.

    图 3  (a) Y2SiO5中替位1处不同掺杂浓度下Eu3+离子7F0$ \rightarrow $5D0跃迁光学吸收谱. (b) 零掺杂样品的7F0$ \rightarrow $5D0跃迁荧光激发谱, 黑色方块为数据点, 红色曲线是拟合曲线. (c) 151Eu3+:Y2SiO5光学非均匀展宽与掺杂浓度拟合图. $ [^{151} {\rm{Eu}} ^{3+}] $表示151Eu3+掺杂浓度. $ \varGamma_\text{{\rm{opt}}-{\rm{inh}}} $表示光学非均匀展宽. 黑色方块为数据点, 红色线和蓝色线分别是0—10–4和10–4—10–3的线性拟合. 拟合方程展示在图中, 并由箭头指向各自曲线

    Fig. 3.  (a) Optical absorption spectrum for the 7F0$ \rightarrow $5D0 transition of Eu3+ ions at site 1 in Y2SiO5 with variable doping concentrations. (b) Fluorescence excitation spectrum for the 7F0$ \rightarrow $5D0 transition of the 0 ppm sample, and the black squares represent the data points, red curve is the fitting curve. (c) Optical inhomogeneous linewidth fitted as a function of 151Eu3+ concentrations. $ [^{151} {\rm{Eu}} ^{3+}]$ is the concentration of 151Eu3+ ions. $ \varGamma_\text{{\rm{opt}}-{\rm{inh}}} $ is the optical inhomogeneous linewidth. Black squares stand for the data points. Red and blue lines represent linear fits of 0–10–4 and 10–4–10–3, respectively. The fitting equations are depicted in the graph, accompanied by arrows indicating their corresponding lines.

    图 4  (a) Y2SiO5中不同掺杂浓度下151Eu3+离子基态$ { |{\pm1/2}\rangle_{\rm{g}}\rightarrow|{\pm3/2}\rangle_{\rm{g}}} $自旋跃迁谱. (b)自旋非均匀展宽随浓度变化的拟合曲线. $ [^{151} {\rm{Eu}} ^{3+}] $表示151Eu3+掺杂浓度. $ \varGamma_{\text{spin-inh}} $表示自旋非均匀展宽. 黑色方块是数据点, 红色和蓝色线分别是从0—10–4和10–4—10–3的线性拟合曲线. 图中各曲线给出了对应的拟合方程

    Fig. 4.  (a) Spin transition spectrum for the ground-state $ { |{\pm1/2}\rangle_{\rm{g}}\rightarrow|{\pm3/2}\rangle_{\rm{g}}} $ transition of 151Eu3+ ions in Y2SiO5 with variable doping concentrations. (b) Fitting curve of concentration-dependent variation in the spin inhomogeneous broadening. $ [^{151} {\rm{Eu}} ^{3+}] $ stands for the concentration of 151Eu3+ ions. $ \varGamma_{\text{spin-inh}} $ represents the spin inhomogeneous linewidth. Black squares are the data points, and the red and blue lines represent linear fits ranging from 0–10–4 and from 10–4–10–3, respectively. Fitted equations are illustrated for their respective lines in the graph.

    表 1  Y2SiO5中同位素提纯151Eu3+中不同掺杂浓度下拟合结果参数表. $ [^{151} {\rm{Eu}} ^{3+}] $表示151Eu3+掺杂浓度, $ \varGamma_{ {\rm{opt}}\text-{\rm{inh}}} $表示光学非均匀展宽, $ \varGamma_{\text{spin-inh}} $表示自旋非均匀展宽, µ1和µ2分别表示光学吸收谱和自旋跃迁谱pseudo-Voigt拟合洛伦兹部分的权重

    Table 1.  Parameter table of the fitting results for variable doping concentrations of isotope-enriched 151Eu3+ ions in the Y2SiO5. $ \varGamma_{ \text{opt-inh}} $ represents the optical inhomogeneous linewidth. $ \varGamma_{\text{spin-inh}} $ stands for the spin inhomogeneous linewidth. The weights µ1 and µ2 represent the contributions of the Lorentzian component in the pseudo-Voigt fitting, corresponding to the optical absorption and spin transition, respectively.

    $ [^{151} {\rm{Eu}} ^{3+}] $/10–6 $ \varGamma_{\text{\rm opt-inh}}$/MHz $ \varGamma_{\text{spin-inh}} $/kHz µ1 µ2
    0 392 ± 15 4.6 ± 0.2 0.65 ± 0.18 0.69 ± 0.15
    30 483 ± 15 5.3 ± 0.2 0.54 ± 0.13 0.47 ± 0.14
    100 677 ± 8 7.0 ± 0.3 0.74 ± 0.04 0.64 ± 0.16
    300 915 ± 9 10.4 ± 0.3 0.83 ± 0.03 0.74 ± 0.12
    700 1319 ± 24 15.4 ± 0.4 1 ± 0.05 0.89 ± 0.09
    1000 1561 ± 21 19.7 ± 0.2 1 ± 0.03 0.89 ± 0.03
    下载: 导出CSV
    Baidu
  • [1]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221Google Scholar

    [2]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [3]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [4]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [5]

    Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381Google Scholar

    [6]

    Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li B, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Science 356 1140Google Scholar

    [7]

    Lukin M D 2003 Rev. Mod. Phys. 75 457Google Scholar

    [8]

    Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar

    [9]

    Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [10]

    Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mücke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195Google Scholar

    [11]

    van Leent T, Bock M, Fertig F, Garthoff R, Eppelt S, Zhou Y, Malik P, Seubert M, Bauer T, Rosenfeld W, Zhang W, Becher C, Weinfurter H 2022 Nature 607 69Google Scholar

    [12]

    Pompili M, Hermans S L N, Baier S, Beukers H K C, Humphreys P C, Schouten R N, Vermeulen R F L, Tiggelman M J, dos Santos Martins L, Dirkse B, Wehner S, Hanson R 2021 Science 372 259Google Scholar

    [13]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [14]

    Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67Google Scholar

    [15]

    Vernaz-Gris P, Huang K, Cao M, Sheremet A S, Laurat J 2018 Nat. Commun. 9 363Google Scholar

    [16]

    Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu S L 2019 Nat. Photonics 13 346Google Scholar

    [17]

    Yu Y, Ma F, Luo X Y, Jing B, Sun P F, Fang R Z, Yang C W, Liu H, Zheng M Y, Xie X P, Zhang W J, You L X, Wang Z, Chen T Y, Zhang Q, Bao X H, Pan J W 2020 Nature 578 240Google Scholar

    [18]

    Julsgaard B, Sherson J, Cirac J I, Fiurášek J, Polzik E S 2004 Nature 432 482Google Scholar

    [19]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174Google Scholar

    [20]

    Chrapkiewicz R, Dąbrowski M, Wasilewski W 2017 Phys. Rev. Lett. 118 063603Google Scholar

    [21]

    Li H, Dou J P, Pang X L, Yang T H, Zhang C N, Chen Y, Li J M, Walmsley I A, Jin X M 2021 Optica 8 925Google Scholar

    [22]

    Ma L, Lei X, Yan J, Li R, Chai T, Yan Z, Jia X, Xie C, Peng K 2022 Nat. Commun. 13 2368Google Scholar

    [23]

    de Riedmatten H, Afzelius M, Staudt M U, Simon C, Gisin N 2008 Nature 456 773Google Scholar

    [24]

    Hedges M P, Longdell J J, Li Y, Sellars M J 2010 Nature 465 1052Google Scholar

    [25]

    Zhou Z Q, Lin W B, Yang M, Li C F, Guo G C 2012 Phys. Rev. Lett. 108 190505Google Scholar

    [26]

    Sabooni M, Li Q, Kröll S, Rippe L 2013 Phys. Rev. Lett. 110 133604Google Scholar

    [27]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, SunY N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652Google Scholar

    [28]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [29]

    Lago-Rivera D, Grandi S, Rakonjac J V, Seri A, de Riedmatten H 2021 Nature 594 37Google Scholar

    [30]

    Ortu A, Holzäpfel A, Etesse J, Afzelius M 2022 npj Quantum Inf. 8 29Google Scholar

    [31]

    Ma Y Z, Jin M, Chen D L, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 4378Google Scholar

    [32]

    Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F, Guo G C 2021 Nature 594 41Google Scholar

    [33]

    Stuart J S, Hedges M, Ahlefeldt R, Sellars M 2021 Phys. Rev. Res. 3 L032054Google Scholar

    [34]

    Askarani M F, Das A, Davidson J H, Amaral G C, Sinclair N, Slater J A, Marzban S, Thiel C W, Cone R L, Oblak D, Tittel W 2021 Phys. Rev. Lett. 127 220502Google Scholar

    [35]

    Businger M, Tiranov A, Kaczmarek K T, Welinski S, Zhang Z, Ferrier A, Goldner P, Afzelius M 2020 Phys. Rev. Lett. 124 053606Google Scholar

    [36]

    Liu D C, Li P Y, Zhu T X, Zheng L, Huang J Y, Zhou Z Q, Li C F, Guo G C 2022 Phys. Rev. Lett. 129 210501Google Scholar

    [37]

    Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 260504Google Scholar

    [38]

    Zhu T X, Liu C, Jin M, Su M X, Liu Y P, Li W J, Ye Y, Zhou Z Q, Li C F, Guo G C 2022 Phys. Rev. Lett. 128 180501Google Scholar

    [39]

    Equall R W, Sun Y, Cone R L, Macfarlane R M 1994 Phys. Rev. Lett. 72 2179Google Scholar

    [40]

    Könz F, Sun Y, Thiel C W, Cone R L, Equall R W, Hutcheson R L, Macfarlane R M 2003 Phys. Rev. B 68 085109Google Scholar

    [41]

    Ma Y Z, Lv Y C, Yang T S, Ma Y, Zhou Z Q, Li C F, Guo G C 2023 Phys. Rev. B 107 014310Google Scholar

    [42]

    Stoneham A M 1969 Rev. Mod. Phys. 41 82Google Scholar

    [43]

    Ching W Y, Ouyang L, Xu Y N 2003 Phys. Rev. B 67 245108Google Scholar

    [44]

    Thorpe M J, Leibrandt D R, Rosenband T 2013 New J. Phys. 15 033006Google Scholar

    [45]

    Lauritzen B, Timoney N, Gisin N, Afzelius M, de Riedmatten H, Sun Y, Macfarlane R M, Cone R L 2012 Phys. Rev. B 85 115111Google Scholar

    [46]

    Lafitte-Houssat E, Ferrier A, Welinski S, Morvan L, Afzelius M, Berger P, Goldner P 2022 Opt. Mater. X 14 100153Google Scholar

    [47]

    Cardona M 2001 Solid State Commun. 121 7Google Scholar

    [48]

    Macfarlane R M, Cassanho A, Meltzer R S 1992 Phys. Rev. Lett. 69 542Google Scholar

    [49]

    Holt D B, Yacobi B G 2007 Characterization of Extended Defects in Semiconductors (Cambridge University Press) pp122–162

    [50]

    Oda O 2001 Encyclopedia of Materials: Science and Technology (Oxford: Elsevier) pp8374–8379

    [51]

    周宗权 2022 71 070305Google Scholar

    Zhou Z Q 2022 Acta Phys. Sin. 71 070305Google Scholar

  • [1] 肖懿鑫, 朱天翔, 梁澎军, 王奕洋, 周宗权, 李传锋. 聚焦离子束加工的硅酸钇波导中铕离子的光学与超精细跃迁.  , 2024, 73(22): 220303. doi: 10.7498/aps.73.20241070
    [2] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展.  , 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [3] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析.  , 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [4] 李丽娟, 明飞, 宋学科, 叶柳, 王栋. 熵不确定度关系综述.  , 2022, 71(7): 070302. doi: 10.7498/aps.71.20212197
    [5] 周宗权. 量子存储式量子计算机与无噪声光子回波.  , 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [6] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储.  , 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [7] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控.  , 2022, 71(6): 064203. doi: 10.7498/aps.71.20211803
    [8] 李宗峰, 刘端程, 周宗权, 李传锋. 基于EuCl3·6H2O晶体的光存储.  , 2021, 70(16): 160302. doi: 10.7498/aps.70.20210648
    [9] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特.  , 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [10] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储.  , 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [11] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展.  , 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [12] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储.  , 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [13] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵.  , 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [14] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储.  , 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [15] 秦猛, 李延标, 白忠. 非均匀磁场和杂质磁场对自旋1系统量子关联的影响.  , 2015, 64(3): 030301. doi: 10.7498/aps.64.030301
    [16] 孙颖, 赵尚弘, 东晨. 基于量子存储的长距离测量设备无关量子密钥分配研究.  , 2015, 64(14): 140304. doi: 10.7498/aps.64.140304
    [17] 邱巍, 吕品, 马英驰, 徐晓娟, 刘典, 张程华. 均匀展宽增益介质中超光速饱和现象的研究.  , 2012, 61(10): 104209. doi: 10.7498/aps.61.104209
    [18] 张国锋, 邢钊. 基于非均匀外场的双量子比特自旋XYZ模型的swap门操作.  , 2010, 59(3): 1468-1472. doi: 10.7498/aps.59.1468
    [19] 刘春旭, 张继森, 刘俊业, 金光. Er3+:YAlO3晶体中Λ型四能级系统的量子相干左手性.  , 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [20] 黄金哲, 任德明, 胡孝勇, 曲彦臣, Y.Andreev, P.Geiko, V.Badikov, G.Lanskii. 掺杂晶体Cd0.35Hg0.65Ga2S4的光学特性.  , 2004, 53(11): 3761-3765. doi: 10.7498/aps.53.3761
计量
  • 文章访问数:  1892
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-02-26
  • 上网日期:  2024-03-30
  • 刊出日期:  2024-05-20

/

返回文章
返回
Baidu
map