搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镱原子超精细诱导5d6s 3D1,3→6s2 1S0 E2跃迁及超精细常数的精确计算

赵国栋 曹进 梁婷 冯敏 卢本全 常宏

引用本文:
Citation:

镱原子超精细诱导5d6s 3D1,3→6s2 1S0 E2跃迁及超精细常数的精确计算

赵国栋, 曹进, 梁婷, 冯敏, 卢本全, 常宏

Accurate calculation of hyperfine-induced 5d6s 3D1,3→6s2 1S0 E2 transitions and hyperfine constants of ytterbium atoms

Zhao Guo-Dong, Cao Jin, Liang Ting, Feng Min, Lu Ben-Quan, Chang Hong
PDF
HTML
导出引用
  • 在镱原子中, 利用$ {\rm 5d6s \; {^3D_1} \to 6s^2 \; {^1S_0}} $跃迁探索宇称破缺效应已经得到了深入的研究. 但是$ {\rm 5d6s\; {^3D_1}} $态与基态$ {\rm 6s^2 \; {^1S_0}} $之间的M1跃迁和超精细诱导E2跃迁很大程度上影响了宇称破缺信号的探测. 因此, 很有必要精确计算$ {\rm 5d6s\; {^3D_1}} $态与基态$ {\rm 6s^2\; {^1S_0}} $之间的M1跃迁和超精细诱导E2跃迁的跃迁概率. 本文利用多组态Dirac-Hartree-Fock理论精确计算了$ {\rm 5d6s \; {^3D_1} \to 6s^2 \; {^1S_0}} $ M1跃迁和超精细诱导$ {\rm 5d6s \; ^3D_{1,3} \to 6s^2 \; {^1S_0}} $ E2跃迁的跃迁概率. 计算时详细分析了电子关联效应对跃迁概率的影响. 此外, 还分析了不同微扰态和不同超精细相互作用对跃迁概率的影响. 本文计算的$ {\rm ^3D_{1,2,3}} $$ {\rm ^1D_2} $ 态的超精细常数与实验测量结果符合得很好, 从而证明了本文所用计算模型的合理性. 结合实验测量的超精细常数和本文理论计算所得的核外电子在原子核处的电场梯度, 重新评估了$ ^{173} $Yb原子核电四极矩$ Q = 2.89(5)\; \rm {b} $, 评估结果与目前被推荐的结果符合得很好.
    The parity violation effects via the $ {\mathrm{5d6s\; {^3D_1} \to 6s^2 \; {^1S_0}}} $ transition have been extensively investigated in ytterbium atoms. However, the M1 transition between the excitation state $ {\mathrm{5d6s\; {^3D_1}}} $ and the ground state $ {\mathrm{6s^2 \; {^1S_0}}} $, as well as the hyperfine-induced E2 transition, significantly affects the detection of parity violation signal. Therefore, it is imperative to obtain the accurate transition probabilities for the M1 and hyperfine-induced E2 transitions between the excitation state ${\mathrm{ 5d6s\; {^3D_1} }}$ and the ground state $ {\mathrm{6s^2\; {^1S_0}}} $. In this work, we use the multi-configuration Dirac-Hartree-Fock theory to precisely calculate the transition probabilities for the ${\mathrm{ 5d6s \; {^3D_1} \to 6s^2 \; {^1S_0} }}$ M1 and hyperfine-induced ${\mathrm{ 5d6s \; ^3D_{1,3} \to 6s^2 \; {^1S_0} }}$ E2 transitions. We extensively analyze the influences of electronic correlation effects on the transition probabilities according to our calculations. Furthermore, we analyze the influences of different perturbing states and various hyperfine interactions on the transition probabilities. The calculated hyperfine constants of the e $ {\mathrm{^3D_{1,2,3}}} $ and ${\mathrm{ ^1D_2}} $ states accord well with experimental measurements, validating the rationality of our computational model. By combining experimentally measured hyperfine constants with the theoretically derived electric field gradient of the extra nuclear electrons at the nucleus, we reevaluate the nuclear quadrupole moment of the $ ^{173} $Yb nucleus as $ Q = 2. 89(5) \;\rm {b} $, showing that our result is in excellent agreement with the presently recommended value.
      通信作者: 卢本全, lubenquan@ntsc.ac.cn ; 常宏, changhong@ntsc.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(B类)(批准号: XDB35010202)资助的课题.
      Corresponding author: Lu Ben-Quan, lubenquan@ntsc.ac.cn ; Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB35010202).
    [1]

    Bouchiat M, Bouchiat C 1974 J. Phys. 35 899Google Scholar

    [2]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [3]

    Roberts B, Dzuba V, Flambaum V 2015 Annu. Rev. Nucl. Part. Sci. 65 63Google Scholar

    [4]

    DeMille D 1995 Phys. Rev. Lett. 74 4165Google Scholar

    [5]

    Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2009 Phys. Rev. Lett. 103 071601Google Scholar

    [6]

    Antypas D, Fabricant A, Stalnaker J E, Tsigutkin K, Flambaum V, Budker D 2019 Nat. Phys. 15 120Google Scholar

    [7]

    Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2010 Phys. Rev. A 81 032114Google Scholar

    [8]

    Dzuba V, Flambaum V 2011 Phys. Rev. A 83 042514Google Scholar

    [9]

    Stalnaker J, Budker D, DeMille D, Freedman S, Yashchuk V V 2002 Phys. Rev. A 66 031403Google Scholar

    [10]

    Sur C, Chaudhuri R K 2007 Phys. Rev. A 76 012509Google Scholar

    [11]

    Kozlov M, Dzuba V, Flambaum V 2019 Phys. Rev. A 99 012516Google Scholar

    [12]

    Stone N 2016 At. Data Nucl. Data Tables 111–112 1Google Scholar

    [13]

    Schwartz C 1955 Phys. Rev. 97 380Google Scholar

    [14]

    Racah G 1942 Phys. Rev. 62 438Google Scholar

    [15]

    Andersson M, Jönsson P 2008 Comput. Phys. Commun. 178 156Google Scholar

    [16]

    Radzig A A, Smirnov B M 2012 Reference Data on Atoms, Molecules, and Ions (Berlin: Springer) p99

    [17]

    Lu B, Lu X, Wang T, Chang H 2022 J. Phys. B: At. Mol. Phys. 55 205002Google Scholar

    [18]

    Bieroń J, Pyykkö P, Sundholm D, Kellö V, Sadlej A J 2001 Phys. Rev. A 64 052507Google Scholar

    [19]

    Li J, Godefroid M, Wang J 2016 J. Phys. B: At. Mol. Phys. 49 115002Google Scholar

    [20]

    Hertel I V, Schulz C P 2014 Atoms, Molecules and Optical Physics (Berlin: Springer) p212

    [21]

    Johnson W R 2007 Atomic Structure Theory (Berlin: Springer) p181

    [22]

    Andersson M, Yao K, Hutton R, Zou Y, Chen C, Brage T 2008 Phys. Rev. A 77 042509Google Scholar

    [23]

    Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211Google Scholar

    [24]

    Lu X, Guo F, Wang Y, Feng M, Liang T, Lu B, Chang H 2023 Phys. Rev. A 108 012820Google Scholar

    [25]

    Johnson W 2010 Can. J. Phys. 89 429Google Scholar

    [26]

    Grumer J, Brage T, Andersson M, Li J, Jönsson P, Li W, Yang Y, Hutton R, Zou Y 2014 Phys. Scr. 89 114002Google Scholar

    [27]

    Fischer C F, Brage T, Jönsson P 2022 Computational Atomic Structure: an MCHF Approach (New York: Routledge) p217

    [28]

    Li J, Jönsson P, Godefroid M, Dong C, Gaigalas G 2012 Phys. Rev. A 86 052523Google Scholar

    [29]

    Jönsson P 1993 Phys. Scr. 48 678Google Scholar

    [30]

    Jönsson P, Gaigalas G, Fischer C F, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J 2023 Atoms 11 68Google Scholar

    [31]

    Olsen J, Roos B O, Jorgensen P, Jensen H 1988 J. Chem. Phys. 89 2185Google Scholar

    [32]

    Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W, Li J, Brage T, Grant I P, Bieroń J, Fischer C F 2023 Atoms 11 7Google Scholar

    [33]

    Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597Google Scholar

    [34]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [35]

    Kramida A, Ralchenko Y, Reader J 2023 NIST Atomic Spectra Database (Version 5.11) https://physics.nist.gov/pml/atomic-spectra-database

    [36]

    Bowers C, Budker D, Freedman S, Gwinner G, Stalnaker J, DeMille D 1999 Phys. Rev. A 59 3513Google Scholar

    [37]

    Beloy K, Sherman J A, Lemke N D, Hinkley N, Oates C W, Ludlow A D 2012 Phys. Rev. A 86 051404Google Scholar

    [38]

    Ai D, Jin T, Zhang T, Luo L, Liu L, Zhou M, Xu X 2023 Phys. Rev. A 107 063107Google Scholar

    [39]

    Kronfeldt H D 1998 Phys. Scr. 1998 5Google Scholar

    [40]

    Porsev S, Rakhlina Y G, Kozlov M 1999 J. Phys. B: At. Mol. Phys. 32 1113Google Scholar

    [41]

    Holmgren L 1975 Phys. Scr. 12 119Google Scholar

    [42]

    Zhang T, Xie L, Li J, Lu Z 2017 Phys. Rev. A 96 012514Google Scholar

    [43]

    Bieroń J, Fischer C F, Jönsson P, Pyykkö P 2008 J. Phys. B: At. Mol. Phys. 41 115002Google Scholar

    [44]

    Singh A K, Angom D, Natarajan V 2013 Phys. Rev. A 87 012512Google Scholar

    [45]

    Zehnder A, Boehm F, Dey W, Engfer R, Walter H, Vuilleumier J 1975 Nucl. Phys. A 254 315Google Scholar

    [46]

    Cheng K, Chen M, Johnson W 2008 Phys. Rev. A 77 052504Google Scholar

  • 图 1  $ {\rm 5 d6 s \ ^3 D_1 \to 6 s^2 \ ^1 S_0} $ M1跃迁及$ {\rm 5 d6 s \ ^{1, 3}D_2}\to $$ {\rm6 s^2 \ ^1 S_0} $ E2跃迁的跃迁概率随虚轨道扩展的变化

    Fig. 1.  Transition rates for $ {\rm 5 d6 s \ ^3 D_1 \to 6 s^2 \ ^1 S_0} $ M1 transition and $ {\rm 5 d6 s \ ^{1, 3}D_2 \to 6 s^2 \ ^1 S_0} $ E2 transition as a function of virtual orbital expansion.

    表 1  不同计算模型下打开的光谱轨道(active orbitals, AO)、虚轨道(virtual orbitals, VO) 以及模型产生的组态空间内总的组态个数(number of configuration state wavefunctions, NCFs). $ J = 0 $ 表示$ {\rm ^1 S_0} $ 态, $ J = 1, 3 $ 表示$ {\rm ^3 D_{1, 3}} $ 态, 而$ J = 2 $对应$ {\rm ^3 D_{2}} $ 和$ {\rm ^1 D_{2}} $ 态

    Table 1.  Active orbitals (AO), virtual orbitals (VO) opened under different calculation models, and NCFs is the total number of the configurations in the configuration space. $ J = 0 $ represents $ {\rm ^1 S_0} $ state, $ J = 1, 3 $ represents $ {\rm ^3 D_{1, 3}} $ states, and the $ J = 2 $ corresponds to the $ {\rm ^3 D_{2}} $ and $ {\rm ^1 D_{2}} $ states, respectively.

    Models AO VO NCFs
    $ J = 0 $ $ J = 1 $ $ J = 2 $ $ J = 3 $
    DHF 1 1 2 1
    VV-1 {$ {\rm 5 d6 s} $;$ {\rm 6 s^2} $} {$ {\rm 7 s, 6 p, 6 d, 5 f, 5 g} $} 15 16 35 24
    C5V-2 {$ {\rm 5 s^25 p^65 d6 s} $;$ {\rm 5 s^25 p^66 s^2} $} {$ {\rm 8 s, 7 p, 7 d, 6 f, 6 g, 6 h} $} 336 1954 4361 3213
    C4V-3 $ \{{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^65 d6 s};{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^66 s^2}\} $ {$ {\rm 9 s, 8 p, 8 d, 7 f, 7 g} $} 2896 20054 49368 37668
    C4V-4 $ \{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^65 d6 s; \rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^66 s^2 \} $ {$ {\rm 10 s, 9 p, 9 d, 8 f, 8 g, 8 h} $} 5058 35649 88596 68104
    C4V-5 $ \{{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^65 d6 s}; {\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^66 s^2}\} $ {$ {\rm 11 s, 10 p, 10 d, 9 f, 9 g, 9 h} $} 7822 55699 139251 107472
    C4V-6 $ \{{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^65 d6 s}; {\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^66 s^2} \}$ {$ {\rm 12 s, 11 p, 11 d, 10 f, 10 g, 9 h} $} 10681 76208 190245 146319
    C4V-7 $ \{{\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^65 d6 s}; {\rm 4 s^24 p^64 d^{10}4 f^{14}5 s^25 p^66 s^2}\} $ {$ {\rm 13 s, 12 p, 12 d, 11 f, 10 g, 9 h} $} 13213 93967 232975 177889
    CC5-7 $ \cup ${$ 5{\mathrm{ s^25 p^65 d6 s}} ; \rm 5 s^25 p^6 s^2 $} {$ {\rm 13 s, 12 p, 12 d, 11 f, 10 g, 9 h} $} 154602 435843 643878 750192
    MR-3 $ \cup \{{\rm 5 s^25 p^6 p^2} ; {\rm 5 s^25 p^25 d^2}; {\rm 5 s^2 5 p^46 s^26 d7 d} $ {$ {\rm 9 s, 8 p, 8 d, 7 f, 7 g, 7 h} $} 754484 2123833 3122817 3614260
    $ {5 {\mathrm{s}}^25 {\mathrm{p}}^6 {\mathrm{s}}7{\mathrm{ s}}} ; {5 {\mathrm{s}}^25 {\mathrm{p}}^66 {\mathrm{d}}7 {\mathrm{s}}}; {5 {\mathrm{s}}^25 {\mathrm{p}}^45{\mathrm{ d}}6 {\mathrm{s}}^26{\mathrm{ d}}}; $
    ${\rm 5 s^25 p^55 d6 s6 p}; {\rm 5 s^25 p^65 f6 p} ; {\rm 5 s^25 p^66 s6 d} $}
    下载: 导出CSV

    表 2  不同计算模型下$ {\rm 5 d6 s \ ^3 D_1 \to 6 s^2 \ ^1 S_0} $ M1跃迁的激发能$ \Delta E $($ \rm {cm^{- 1}} $), RME (a.u.)和跃迁概率R($ \rm {s^{- 1}} $). 方括号中的值表示以10为底的指数, 圆括号内的值表示误差

    Table 2.  Excitation energy $ \Delta E $ (in $ \rm {cm^{- 1}} $), transition probability R (in $ \rm {s^{- 1}} $), and RME (in a.u.) for the $ {\rm 5 d6 s \ ^3 D_1 \to 6 s^2 \ ^1 S_0} $ M1 transition under various computational models. The values in brackets represent exponents with a base of 10, and values in parentheses indicate errors.

    Models E RME R
    DHF 21063.62 1.83[–6] 1.134[–9]
    VV-1 24989.1 2.69[–5] 4.059[–7]
    C4V-7 22195.61 1.61[–4] 1.019[–5]
    CC5-7 22987.31 1.16[–4] 5.887[–6]
    MR-3 24430.65 1.47[–4] 1.137[–5]
    Breit+QED 24301.85 1.45[–4] 1.088[–5]
    Sur等[10] 1.34[–4]
    Expt.[9] 1.33(20)[–4]
    NIST[35] 24489.10
    下载: 导出CSV

    表 3  $ {\rm 5 d6 s \ ^{1, 3}D_2 \to 6 s^2 \ ^1 S_0} $ E2 跃迁的激发能$ \Delta E $($ \rm {cm^{- 1}} $), RME(a.u.) 和跃迁概率R($ \rm {s^{- 1}} $)在不同计算模型下的结果. V表示速度规范, L表示长度规范

    Table 3.  Excitation energy $ \Delta E $ (in $ \rm {cm^{-1}} $), RME (in a.u.), and transition probability R (in $ \rm {s^{-1}} $) for the $ {\rm 5 d6 s \ ^{1, 3}D_2 \to 6 s^2 \ ^1 S_0} $ E2 transition under various computational models. “V” denotes the velocity gauge, and “L” represents the length gauge.

    $ {\rm ^3 D_2 \to {^1 S_0}} $ $ {\rm ^1 D_2 \to {^1 S_0}} $
    Models $ \Delta E $ $ \rm{RME_{\rm L}} $ $ \rm{RME_{\rm V}} $ $ R_{\rm L} $ $ R_{\rm V} $ $ \Delta E $ $ \rm{RME_{\rm L}} $ $ \rm{RME_{\rm V}} $ $ R_{\rm L} $ $ R_{\rm V} $
    DHF 21114.02 0.05 0.05 0.001 0.001 28822.95 $ - $15.05 $ - $13.59 403.87 329.46
    VV-1 25010.57 2.09 2.00 3.85 3.51 26254.24 $ - $15.26 $ - $14.84 238.18 225.08
    C4V-7 22406.02 1.18 1.12 0.71 0.64 26208.26 $ - $11.67 $ - $11.26 150.96 140.41
    CC5-7 23171.20 0.86 0.85 0.45 0.43 28126.76 $ - $13.55 $ - $12.75 289.61 256.70
    MR-3 24685.75 1.21 1.15 1.20 1.10 28313.29 $ - $12.63 $ - $12.84 260.01 232.25
    Breit+QED 24553.44 1.18 1.13 1.11 1.02 28206.64 $ - $12.61 $ - $11.94 254.33 228.31
    Bowers等[36] 1.12(4)
    Expt.[36] 1.45(7)
    NIST[35] 24751.95 27677.67
    下载: 导出CSV

    表 4  $ {\rm 5 d6 s \ ^{3}D_{1, 2, 3}} $态与$ {\rm ^{1}D_2} $态的磁偶极超精细常数A (MHz)和电四极超精细常数B (MHz)

    Table 4.  Magnetic dipole hyperfine constant A (in MHz) and electric quadrupole hyperfine constant B (in MHz) for the $ {\rm 5 d6 s \ ^{3}D_{1, 2, 3}} $ and $ {\rm ^{1}D_2} $ states.

    $ ^{171} {\mathrm{Yb}}$ $ ^{173} {\mathrm{Yb}}$ Ref.
    A A B
    $ {\rm ^3 D_1} $ Expt. $ - $2040(2) 562.8(5) 337(2) [36]
    $ - $2047(47) [37]
    $ - $2032.67(17) [38]
    563(1) 335(1) [39]
    Theory $ - $2349 648 249 [11]
    596 290 [40]
    597 [41]
    $ - $2119.3 583.79 338.46 This work
    $ {\rm ^3 D_2} $ Expt. 1315(4) $ - $363.4(10) 487(5) [36]
    $ - $362(2) 482(22) [39]
    Theory 1354 $ - $373 387 [11]
    $ - $351 440 [40]
    $ - $765 [41]
    1314.62 $ - $362.13 491.39 This work
    $ {\rm ^3 D_3} $ Expt. $ - $430(1) 909(29) [39]
    Theory $ - $420 728 [40]
    $ - $477 [41]
    1626.97 $ - $448.17 836.5 This work
    $ {\rm ^1 D_2} $ Expt. 100(18) 1115(89) [39]
    Theory 131 1086 [40]
    465 [41]
    $ - $313.87 86.46 1053.44 This work
    下载: 导出CSV

    表 5  不同模型下的EFG(a.u.), 以及重新评估后的$ ^{173} $Yb原子核电四极矩Q(b)

    Table 5.  The EFG (in a.u.) calculated under different models, along with the reassessment of the nuclear electric quadrupole moment Q (in b) for $ ^{173} $Yb.

    Models $ {\rm ^3 D_1} $ $ {\rm ^3 D_2} $ $ {\rm ^3 D_3} $
    EFG Q EFG Q EFG Q
    DHF 0.23 6.09 0.32 6.47 0.55 7.07
    C4V-7 0.52 2.75 0.77 2.69 1.29 2.99
    CC5-7 0.43 3.26 0.63 3.27 1.10 3.52
    MR-3 0.51 2.79 0.74 2.77 1.27 3.04
    下载: 导出CSV

    表 6  $ ^{171}{\mathrm{Yb}} $和$ ^{173}{\mathrm{Yb}} $原子的超精细诱导$ {\rm 5 d6 s \ {^3 D_{1, 3}}}IF' \to {\rm 6 s^2 \ {^1 S_0}} $ E2跃迁的混合系数(a.u.)

    Table 6.  Mixing coefficients (in a.u.) for the hyperfine-induced $ {\rm 5 d6 s \ {^3 D_{1, 3}}}IF' \to {\rm 6 s^2 \ {^1 S_0}} $ E2 transition in $ ^{171} {\mathrm{Yb}}$ and $ ^{173} {\mathrm{Yb}}$.

    $ {\rm (^3 D_2, {^3 D_1})} $ $ {\rm (^1 D_2, {^3 D_1})} $
    $ F' $ $ \varepsilon_{1}^{{\rm A}} $ $ \varepsilon_{1}^{{\rm B}} $ $ \varepsilon_{1} $ $ \varepsilon_{2}^{{\rm A}} $ $ \varepsilon_{2}^{{\rm B}} $ $ \varepsilon_{2} $
    $ ^{171} $Yb 3/2 $ - $1.54[$ - $4] 0 $ - $1.54[$ - $4] 7.1[$ - $6] 0 7.1[$ - $6]
    7/2 $ - $7.36[$ - $5] $ - $5.47[$ - $6] $ - $7.91[$ - $5] 3.39[$ - $6] 4.04[$ - $8] 3.43[$ - $6]
    $ ^{173} $Yb 5/2 $ - $7.17[$ - $5] 3.99[$ - $6] $ - $6.77[$ - $5] 3.30[$ - $6] $ - $2.95[$ - $8] 3.27[$ - $6]
    3/2 $ - $5.03[$ - $5] 7.47[$ - $6] $ - $4.28[$ - $5] 2.31[$ - $6] $ - $5.53[$ - $8] 2.26[$ - $6]
    $ {\rm (^3 D_2, {^3 D_3})} $ $ {\rm (^1 D_2, {^3 D_3})} $
    $ F' $ $ \varepsilon_{1}^{{\rm A}} $ $ \varepsilon_{1}^{{\rm B}} $ $ \varepsilon_{1} $ $ \varepsilon_{2}^{{\rm A}} $ $ \varepsilon_{2}^{{\rm B}} $ $ \varepsilon_{2} $
    $ ^{171} $Yb 5/2 5.28[$ - $5] 0 5.28[$ - $5] –1.37[$ - $5] 0 $ - $1.37[$ - $5]
    9/2 2.35[$ - $5] 2.56[$ - $6] 2.61[$ - $5] $ - $6.13[$ - $6] $ - $3.78[$ - $8] $ - $6.17[$ - $6]
    7/2 2.54[$ - $5] $ - $3.46[$ - $7] 2.51[$ - $5] $ - $6.61[$ - $6] 5.1[$ - $9] $ - $6.61[$ - $6]
    $ ^{173} $Yb 5/2 2.21[$ - $5] $ - $2.41[$ - $6] 1.97[$ - $5] $ - $5.76[$ - $6] 3.55[$ - $8] $ - $5.73[$ - $6]
    3/2 1.61[$ - $5] $ - $2.84[$ - $6] 1.32[$ - $5] $ - $4.81[$ - $6] 4.19[$ - $8] $ - $4.14[$ - $6]
    1/2 8.40[$ - $6] $ - $1.83[$ - $6] 6.57[$ - $5] $ - $2.19[$ - $6] 2.7[$ - $8] $ - $2.16[$ - $6]
    下载: 导出CSV

    表 7  $ ^{171} {\mathrm{Yb}}$和$ ^{173} {\mathrm{Yb}}$的超精细诱导$ {\rm 5 d6 s \ {^3 D_{1, 3}}}IF' \to {\rm 6 s^2 \ {^1 S_0}} $ E2跃迁的跃迁概率($ \rm s^{- 1} $). $ T_1 $与$ T_2 $分别表示磁偶极超精细相互作用与电四极超精细相互作用下的诱导跃迁概率. $ R_1 $与$ R_3 $表示超精细诱导跃迁$ {\rm 5 d6 s \ {^3 D_{1}}}IF' \to {\rm 6 s^2 \ {^1 S_0}} $中$ {\rm ^{3}D_2} $微扰态和$ {\rm ^{1}D_2} $微扰态与$ {\rm {^3 D_{1}}} $态混合后的诱导跃迁概率. $ R_1' $与$ R_3' $表示超精细诱导跃迁$ {\rm 5 d6 s \ {^3 D_{3}}}IF' \to {\rm 6 s^2 \ {^1 S_0}} $中$ {\rm ^{3}D_2} $微扰态和$ {\rm ^{1}D_2} $微扰态与$ {\rm {^3 D_{3}}} $态混合后的诱导跃迁概率. 方括号内的数值代表以10 为底的指数, 圆括号内的数值代表误差

    Table 7.  Transition probabilities (in $ \rm s^{-1} $) for the hyperfine-induced $ {\rm 5 d6 s \ {^3 D_{1, 3}}}IF' \to {\rm 6 s^2 \ {^1 S_0}} $ E2 transitions in $ ^{171} {\mathrm{Yb}}$ and $ ^{173} {\mathrm{Yb}}$. T1 and T2 represent the induced transition probabilities under magnetic dipole hyperfine interaction and electric quadrupole hyperfine interaction, respectively. $ R_1 $ and $ R_3 $ represent the transition probabilities in the hyperfine-induced transition $ {\rm 5 d6 s \ {^3 D_{1}}}IF' \to {\rm 6 s^2 \ {^1 S_0}} $, where the perturbed states $ {\rm ^{3}D_2} $ and $ {\rm ^{1}D_2} $ are mixed with the $ {\rm {^3 D_{1}}} $ state. Similarly, $ R_1' $ and $ R_3' $ denote the transition probabilities in the hyperfine-induced transition $ {\rm 5 d6 s \ {^3 D_{3}}}IF' \to {\rm 6 s^2 \ {^1 S_0}} $, where the perturbed states $ {\rm ^{3}D_2} $ and $ {\rm ^{1}D_2} $ are mixed with the $ {\rm {^3 D_{3}}} $ state. The numerical values in square brackets denote the exponentiation with base 10, while the values in parentheses represent the error.

    $ R_1 $ $ R_3 $ Total
    $ F' $ $ T_1 $ $ T_2 $ $ T_1 $ $ T_2 $
    3/2 1.09[$ - $8] 0 2.64[$ - $9] 0 2.42(23)[$ - $8]
    7/2 2.48[$ - $9] 1.37[$ - $11] 6.00[$ - $10] 8.53[$ - $14] 6.13(60)[$ - $9]
    5/2 2.35[$ - $9] 7.29[$ - $12] 5.69[$ - $10] 4.55[$ - $14] 4.82(47)[$ - $9]
    3/2 1.16[$ - $9] 2.55[$ - $11] 2.80[$ - $10] 1.60[$ - $13] 2.05(20)[$ - $9]
    $ R_1' $ $ R_3' $ Total
    $ F' $ $ T_1 $ $ T_2 $ $ T_1 $ $ T_2 $
    5/2 6.41[$ - $10] 0 4.96[$ - $9] 0 9.16(89)[$ - $9]
    9/2 1.27[$ - $10] 1.51[$ - $12] 9.85[$ - $10] 3.75[$ - $14] 1.94(18)[$ - $9]
    7/2 1.48[$ - $10] 2.74[$ - $14] 1.15[$ - $9] 6.82[$ - $16] 2.10(20)[$ - $9]
    5/2 1.12[$ - $10] 1.33[$ - $12] 8.70[$ - $10] 3.30[$ - $14] 1.50(14)[$ - $9]
    3/2 5.92[$ - $11] 1.85[$ - $12] 4.58[$ - $10] 4.60[$ - $14] 7.58(74)[$ - $10]
    1/2 1.62[$ - $11] 7.68[$ - $13] 1.25[$ - $10] 1.91[$ - $14] 2.02(19)[$ - $10]
    下载: 导出CSV

    表 8  $ ^{171}{\mathrm{Yb}} $和$ ^{173}{\mathrm{Yb}} $的超精细诱导$ {\rm 5 d6 s \ {^3 D_{1}}}IF' \to {\rm 6 s^2 \ {^1 S_0}} $ E2跃迁的跃迁幅度. $ E2_{\rm A} $与$ E2_{\rm B} $分别表示磁偶极超精细相互作用与电四极超精细相互作用下的诱导跃迁幅度. $ E2_{{\rm tot}} $表示磁偶极与电四极超精细相互作用共同作用下的诱导跃迁幅度. 方括号内的数值代表以10为底的指数, 圆括号内的数值代表误差

    Table 8.  Transition amplitude of the hyperfine-induced $ {\rm 5 d6 s \ {^3 D_{1}}}IF' \to {\rm 6 s^2 \ {^1 S_0}} $ E2 transition in $ ^{171} {\mathrm{Yb}}$ and $ ^{173} {\mathrm{Yb}}$. $ E2_{\rm A} $ and $ E2_{\rm B} $ represent the induced transition amplitudes under the magnetic dipole hyperfine interaction and electric quadrupole hyperfine interaction, respectively. $ E2_{{\rm tot}} $ denotes the induced transition amplitude under the combined influence of magnetic dipole and electric quadrupole hyperfine interactions. The numerical values in square brackets denote the exponentiation with base 10, while the values in parentheses represent the error.

    IF Ref.
    1/2, 3/2 5/2, 3/2 5/2, 5/5 5/2, 7/2
    $ E2_{\rm A} $ 6.43[$ - $4] $ - $3.63[$ - $4] 6.34[$ - $4] $ - $7.52[$ - $4] Kozlov[11]
    1.62[$ - $4] $ - $0.53[$ - $4] 9.26[$ - $5] $ - $1.09[$ - $4] This work
    $ E2_{\rm B} $ 0 $ - $3.90[$ - $5] 2.10[$ - $5] 2.80[$ - $5] Kozlov[11]
    0 $ - $7.88[$ - $6] 5.16[$ - $6] 8.16[$ - $6] This work
    $ E2_{{\rm tot}} $ 6.40(1.0)[$ - $4] $ - $4.00(60)[$ - $4] 6.60(1.0)[$ - $4] $ - $7.20(1.2)[$ - $4] Kozlov[11]
    1.62(6)[$ - $4] $ - $4.50(20)[$ - $5] 9.76(41)[$ - $5] $ - $1.01(4)[$ - $4] This work
    下载: 导出CSV
    Baidu
  • [1]

    Bouchiat M, Bouchiat C 1974 J. Phys. 35 899Google Scholar

    [2]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [3]

    Roberts B, Dzuba V, Flambaum V 2015 Annu. Rev. Nucl. Part. Sci. 65 63Google Scholar

    [4]

    DeMille D 1995 Phys. Rev. Lett. 74 4165Google Scholar

    [5]

    Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2009 Phys. Rev. Lett. 103 071601Google Scholar

    [6]

    Antypas D, Fabricant A, Stalnaker J E, Tsigutkin K, Flambaum V, Budker D 2019 Nat. Phys. 15 120Google Scholar

    [7]

    Tsigutkin K, Dounas Frazer D, Family A, Stalnaker J E, Yashchuk V V, Budker D 2010 Phys. Rev. A 81 032114Google Scholar

    [8]

    Dzuba V, Flambaum V 2011 Phys. Rev. A 83 042514Google Scholar

    [9]

    Stalnaker J, Budker D, DeMille D, Freedman S, Yashchuk V V 2002 Phys. Rev. A 66 031403Google Scholar

    [10]

    Sur C, Chaudhuri R K 2007 Phys. Rev. A 76 012509Google Scholar

    [11]

    Kozlov M, Dzuba V, Flambaum V 2019 Phys. Rev. A 99 012516Google Scholar

    [12]

    Stone N 2016 At. Data Nucl. Data Tables 111–112 1Google Scholar

    [13]

    Schwartz C 1955 Phys. Rev. 97 380Google Scholar

    [14]

    Racah G 1942 Phys. Rev. 62 438Google Scholar

    [15]

    Andersson M, Jönsson P 2008 Comput. Phys. Commun. 178 156Google Scholar

    [16]

    Radzig A A, Smirnov B M 2012 Reference Data on Atoms, Molecules, and Ions (Berlin: Springer) p99

    [17]

    Lu B, Lu X, Wang T, Chang H 2022 J. Phys. B: At. Mol. Phys. 55 205002Google Scholar

    [18]

    Bieroń J, Pyykkö P, Sundholm D, Kellö V, Sadlej A J 2001 Phys. Rev. A 64 052507Google Scholar

    [19]

    Li J, Godefroid M, Wang J 2016 J. Phys. B: At. Mol. Phys. 49 115002Google Scholar

    [20]

    Hertel I V, Schulz C P 2014 Atoms, Molecules and Optical Physics (Berlin: Springer) p212

    [21]

    Johnson W R 2007 Atomic Structure Theory (Berlin: Springer) p181

    [22]

    Andersson M, Yao K, Hutton R, Zou Y, Chen C, Brage T 2008 Phys. Rev. A 77 042509Google Scholar

    [23]

    Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211Google Scholar

    [24]

    Lu X, Guo F, Wang Y, Feng M, Liang T, Lu B, Chang H 2023 Phys. Rev. A 108 012820Google Scholar

    [25]

    Johnson W 2010 Can. J. Phys. 89 429Google Scholar

    [26]

    Grumer J, Brage T, Andersson M, Li J, Jönsson P, Li W, Yang Y, Hutton R, Zou Y 2014 Phys. Scr. 89 114002Google Scholar

    [27]

    Fischer C F, Brage T, Jönsson P 2022 Computational Atomic Structure: an MCHF Approach (New York: Routledge) p217

    [28]

    Li J, Jönsson P, Godefroid M, Dong C, Gaigalas G 2012 Phys. Rev. A 86 052523Google Scholar

    [29]

    Jönsson P 1993 Phys. Scr. 48 678Google Scholar

    [30]

    Jönsson P, Gaigalas G, Fischer C F, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J 2023 Atoms 11 68Google Scholar

    [31]

    Olsen J, Roos B O, Jorgensen P, Jensen H 1988 J. Chem. Phys. 89 2185Google Scholar

    [32]

    Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W, Li J, Brage T, Grant I P, Bieroń J, Fischer C F 2023 Atoms 11 7Google Scholar

    [33]

    Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597Google Scholar

    [34]

    Fischer C F, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [35]

    Kramida A, Ralchenko Y, Reader J 2023 NIST Atomic Spectra Database (Version 5.11) https://physics.nist.gov/pml/atomic-spectra-database

    [36]

    Bowers C, Budker D, Freedman S, Gwinner G, Stalnaker J, DeMille D 1999 Phys. Rev. A 59 3513Google Scholar

    [37]

    Beloy K, Sherman J A, Lemke N D, Hinkley N, Oates C W, Ludlow A D 2012 Phys. Rev. A 86 051404Google Scholar

    [38]

    Ai D, Jin T, Zhang T, Luo L, Liu L, Zhou M, Xu X 2023 Phys. Rev. A 107 063107Google Scholar

    [39]

    Kronfeldt H D 1998 Phys. Scr. 1998 5Google Scholar

    [40]

    Porsev S, Rakhlina Y G, Kozlov M 1999 J. Phys. B: At. Mol. Phys. 32 1113Google Scholar

    [41]

    Holmgren L 1975 Phys. Scr. 12 119Google Scholar

    [42]

    Zhang T, Xie L, Li J, Lu Z 2017 Phys. Rev. A 96 012514Google Scholar

    [43]

    Bieroń J, Fischer C F, Jönsson P, Pyykkö P 2008 J. Phys. B: At. Mol. Phys. 41 115002Google Scholar

    [44]

    Singh A K, Angom D, Natarajan V 2013 Phys. Rev. A 87 012512Google Scholar

    [45]

    Zehnder A, Boehm F, Dey W, Engfer R, Walter H, Vuilleumier J 1975 Nucl. Phys. A 254 315Google Scholar

    [46]

    Cheng K, Chen M, Johnson W 2008 Phys. Rev. A 77 052504Google Scholar

  • [1] 肖懿鑫, 朱天翔, 梁澎军, 王奕洋, 周宗权, 李传锋. 聚焦离子束加工的硅酸钇波导中铕离子的光学与超精细跃迁.  , 2024, 73(22): 220303. doi: 10.7498/aps.73.20241070
    [2] 陈润, 邵旭萍, 黄云霞, 杨晓华. BrF分子电磁偶极跃迁转动超精细微波谱模拟.  , 2023, 72(4): 043301. doi: 10.7498/aps.72.20221957
    [3] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国. 类铝离子钟跃迁能级的超精细结构常数和朗德g因子.  , 2023, 72(22): 223101. doi: 10.7498/aps.72.20230940
    [4] 张天成, 潘高远, 俞友军, 董晨钟, 丁晓彬. 超重元素Og(Z = 118)及其同主族元素的电离能和价电子轨道束缚能.  , 2022, 71(21): 213201. doi: 10.7498/aps.71.20220813
    [5] 娄冰琼, 李芳, 王沛妍, 王黎明, 唐永波. 钫原子磁偶极超精细结构常数及其同位素的磁偶极矩的理论计算.  , 2019, 68(9): 093101. doi: 10.7498/aps.68.20190113
    [6] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究.  , 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [7] 武跃龙, 李睿, 芮扬, 姜海峰, 武海斌. 6Li原子跃迁频率和超精细分裂的精密测量.  , 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [8] 张婷贤, 李冀光, 刘建鹏. Al+离子3s2 1S0→3s3p 3,1P1o跃迁同位素偏移的理论研究.  , 2018, 67(5): 053101. doi: 10.7498/aps.67.20172261
    [9] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数.  , 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [10] 余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维. 采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究.  , 2017, 66(11): 113101. doi: 10.7498/aps.66.113101
    [11] 任雅娜, 杨保东, 王杰, 杨光, 王军民. 铯原子7S1/2态磁偶极超精细常数的测量.  , 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [12] 段俊毅, 王勇, 张临杰, 李昌勇, 赵建明, 贾锁堂. 铯47D精细能级超冷里德堡原子自由演化的动力学研究.  , 2015, 64(2): 023201. doi: 10.7498/aps.64.023201
    [13] 李文亮, 张季, 姚洪斌. 三种不同表象下多组态含时Hartree Fock理论实现方案.  , 2013, 62(12): 123202. doi: 10.7498/aps.62.123202
    [14] 李晓莉, 张连水, 孙江, 冯晓敏. 微波驱动精细结构能级跃迁引起的电磁诱导负折射效应.  , 2012, 61(4): 044202. doi: 10.7498/aps.61.044202
    [15] 谢林华, 丘 岷. MgF2:Mn2+光谱、超精细常数和局部结构的关联.  , 2005, 54(12): 5845-5848. doi: 10.7498/aps.54.5845
    [16] 谭明亮, 朱正和, 赵永宽, 陈晓峰. 类铜Au50+精细结构能级和光谱跃迁的相对论多组态计算.  , 1996, 45(10): 1609-1614. doi: 10.7498/aps.45.1609
    [17] 习金华, 吴礼金. 原子实极化效应对ScⅡ离子3d2三重态超精细相互作用的影响.  , 1992, 41(3): 370-378. doi: 10.7498/aps.41.370
    [18] 王宛珏. 类氮KⅩⅢ,CaⅪⅤ,ScⅩⅤ和TiⅩⅥ精细结构能级和跃迁波长的相对论多组态Dirac-Fock计算.  , 1992, 41(5): 726-731. doi: 10.7498/aps.41.726
    [19] 徐祖雄, 马如璋. 由重迭的穆斯堡尔谱求解超精细参数分布的最大熵方法.  , 1988, 37(12): 1949-1955. doi: 10.7498/aps.37.1949
    [20] 汤昌国, 董太乾, 郑乐民. Rb87原子基态超精细0—0跃迁的章动和弛豫现象.  , 1983, 32(7): 829-837. doi: 10.7498/aps.32.829
计量
  • 文章访问数:  2724
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 修回日期:  2024-02-22
  • 上网日期:  2024-03-04
  • 刊出日期:  2024-05-05

/

返回文章
返回
Baidu
map