搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿型CeTaN2O的高压制备及其磁性和电学性质

陈兆亮 卢达标 叶旭斌 赵浩婷 张杰 潘昭 迟振华 崔田 沈瑶 龙有文

引用本文:
Citation:

钙钛矿型CeTaN2O的高压制备及其磁性和电学性质

陈兆亮, 卢达标, 叶旭斌, 赵浩婷, 张杰, 潘昭, 迟振华, 崔田, 沈瑶, 龙有文

High-pressure synthesized perovskite-type CeTaN2O and its magnetic and electrical properties

Chen Zhao-Liang, Lu Da-Biao, Ye Xu-Bin, Zhao Hao-Ting, Zhang Jie, Pan Zhao, Chi Zhen-Hua, Cui Tian, Shen Yao, Long You-Wen
PDF
HTML
导出引用
  • 最近研究发现, AB(N,O)3型钙钛矿氧氮化物具有优异的介电、铁电、光催化等性能, 在光电子、能源存储和通信等领域展现出广阔的应用前景. 但是, 目前该类型材料的制备工艺耗时较长且产物纯度较低. 本文以氧化物为前驱体、以氨基钠为氮源, 利用六面顶压机设备所提供的高温高压环境成功制备了高纯度的钙钛矿型氧氮化物CeTaN2O块体材料, 并将制备时间缩短至1 h, 实现了快速合成. 并对其晶体结构以及物理性质进行了系统的研究. X射线粉末衍射实验和Rietveld精修结果表明, 所制备的样品属于正交晶系, 空间群为Pnma. X射线吸收谱测试确定了样品的电荷组态以及阴离子组合为Ce3+Ta5+N2O. 磁性和比热测试表明, 样品属于反铁磁物质, 磁相变温度低于2 K. 电学输运性能测试表明, 样品的电阻率呈现出典型的半导体行为, 且符合三维变程跳跃模型.
    Recently, it has been discovered that the AB(N,O)3-type perovskite oxynitrides exhibit excellent dielectric, ferroelectric, and photocatalytic properties, promising for applications in the fields of optoelectronics, energy storage, and communication. Due to the differences in charge, ionic radius, and covalent bonding between N3– ion and O2– ion, the N substitution for O enhances the B(N,O)6 octahedron tilting, giving rise to exotic properties and functionalities. However, the current fabrication process for this type of material is rather time-consuming, leading to products with an appreciable quantity of impurities. In this study, using oxide precursors and sodium amide as the nitrogen source, high-purity perovskite-type oxynitride CeTaN2O bulk materials are successfully synthesized under high-temperature and high-pressure conditions provided by a cubic-anvil press. The synthesis time decreases to 1 h, achieving rapid production. The lattice structure and physical properties of the obtained samples are comprehensively investigated. X-ray powder diffraction experiments and subsequent Rietveld refinement indicate that the title material shows an orthorhombic crystal structure with the space group of Pnma. The X-ray absorption spectra confirm the charge configuration and the anion composition as Ce3+Ta5+N2O. Magnetization and specific heat measurements reveal that the exchange interactions are mainly antiferromagnetic, with a potential magnetic transition below 2 K. The electrical transport data demonstrate typical semiconductor behaviors, which can be further explained by a three-dimensional variable-range hopping model. Our study paves the way for putting this exotic perovskite oxynitride into practical applications.
      通信作者: 迟振华, zhchi@ipp.ac.cn ; 沈瑶, yshen@iphy.ac.cn ; 龙有文, ywlong@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA1400300)、国家自然科学基金(批准号: 11934017, 12261131499, 11921004, 12304268)、北京市自然科学基金(批准号: Z200007)和中国科学院战略性先导科技专项(B类) (批准号: XDB33000000)资助的课题.
      Corresponding author: Chi Zhen-Hua, zhchi@ipp.ac.cn ; Shen Yao, yshen@iphy.ac.cn ; Long You-Wen, ywlong@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1400300), the National Natural Science Foundation of China (Grant Nos. 11934017, 12261131499, 11921004, 12304268), the Natural Science Foundation of Beijing, China (Grant No. Z200007), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33000000).
    [1]

    Tobías G, Oró-Solé J, Beltrán-Porter D, Fuertes A 2001 Inorg. Chem. 40 6867Google Scholar

    [2]

    Marchand R, Pors F, Laurent Y, Regreny O, Lostec J, Haussonne J M 1986 J. Phys. Colloques 47 C1Google Scholar

    [3]

    Kim Y I, Woodward P M, Baba-Kishi K Z, Tai C W 2004 Chem. Mater. 16 1267Google Scholar

    [4]

    Jorge A B, Oró-Solé J, Bea A M, Mufti N, Palstra T T M, Rodgers J A, Attfield J P, Fuertes A 2008 J. Am. Chem. Soc. 130 12572Google Scholar

    [5]

    Yang M, Oró-Solé J, Kusmartseva A, Fuertes A, Attfield J P 2010 J. Am. Chem. Soc. 132 4822Google Scholar

    [6]

    Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851Google Scholar

    [7]

    Li Y Q, Delsing A C A, de With G, Hintzen H T 2005 Chem. Mater. 17 3242Google Scholar

    [8]

    Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar

    [9]

    叶施亚, 李端, 李俊生, 曾良, 曹峰 2021 人工晶体学报 50 187

    Ye S Y, Li D, Li J S, Zeng L, F C 2021 J. Synth. Cryst. 50 187

    [10]

    Porter S H, Huang Z, Woodward P M 2014 Cryst. Growth Des. 14 117Google Scholar

    [11]

    Porter S H, Huang Z, Cheng Z, Avdeev M, Chen Z, Dou S, Woodward P M 2015 J. Solid State Chem. 226 279Google Scholar

    [12]

    Page K, Stoltzfus M W, Kim Y I, Proffen T, Woodward P M, Cheetham A K, Seshadri R 2007 Chem. Mater. 19 4037Google Scholar

    [13]

    Badding J V 1998 Annu. Rev. Mater. Sci. 28 631Google Scholar

    [14]

    Brazhkin V V 2007 High Pressure Res. 27 333Google Scholar

    [15]

    Rietveld H M 1969 J. Appl. Crystallogr. 2 65Google Scholar

    [16]

    Roth R S, Negas T, Parker H S, Minor D B, Jones C 1977 Mater. Res. Bull. 12 1173Google Scholar

    [17]

    Santoro A, Marezio M, Roth R S, Minor D 1980 J. Solid State Chem. 35 167Google Scholar

    [18]

    殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文 2017 66 030201Google Scholar

    Yin Y Y, Wang X, Deng H S, Zhou L, Dai J H, Long Y W 2017 Acta Phys. Sin. 66 030201Google Scholar

    [19]

    Deminami S, Kawamura Y, Chen Y Q, Kanazawa M, Hayashi J, Kuzuya T, Takeda K, Matsuda M, Sekine C 2017 J. Phys. Conf. Ser. 950 042032Google Scholar

    [20]

    Sekine C, Sai U, Hayashi J, Kawamura Y, Bauer E 2017 J. Phys. Conf. Ser. 950 042028Google Scholar

    [21]

    Kabeya N, Takahara S, Satoh N, Nakamura S, Katoh K, Ochiai A 2018 Phys. Rev. B 98 035131Google Scholar

    [22]

    Nakano T, Onuma S, Takeda N, Uhlířová K, Prokleška J, Sechovský V, Gouchi J, Uwatoko Y 2019 Phys. Rev. B 100 035107Google Scholar

    [23]

    Matin M, Kulkarni R, Thamizhavel A, Dhar S K, Provino A, Manfrinetti P 2017 J. Phys Condens. Matter 29 145601Google Scholar

    [24]

    Ajeesh M O, Kushwaha S K, Thomas S M, Thompson J D, Chan M K, Harrison N, Tomczak J M, Rosa P F S 2023 Phys. Rev. B 108 245125Google Scholar

    [25]

    Ravot D, Burlet P, Rossat-Mignod J, Tholence J L 1980 J. Phys. 41 1117Google Scholar

    [26]

    Mott N F 1969 Philos. Mag. 19 835Google Scholar

  • 图 1  ABO3 (a)与AB(N, O)3 (b)钙钛矿的晶体结构示意图

    Fig. 1.  Schematic crystal structures for ABO3 (a) and AB(N, O)3 perovskites (b).

    图 2  室温下CeTaN2O的XRD图谱和结构精修结果, 插图给出了晶体结构示意图

    Fig. 2.  XRD pattern and structure refinement results of CeTaN2O obtained at room temperature. The inset shows a schematic diagram of the crystal structure.

    图 3  (a) Ce-M4,5; (b) Ta-L3的XAS. 图中给出了相关的参考样品作为对比

    Fig. 3.  XAS at (a) Ce-M4,5 edges and (b) Ta-L3 edges. The XAS of related references are also shown for comparison.

    图 4  (a) 0.1 T磁场下磁化率和磁化率倒数随温度的变化关系, 其中蓝线代表100 K以上的居里-外斯拟合结果; (b) 不同温度下磁化强度随磁场的变化关系

    Fig. 4.  (a) Temperature dependence of magnetic susceptibility and the inverse susceptibility at 0.1 T. The blue line shows the Curie-Weiss fitting above 100 K; (b) field dependent magnetization measured at different temperatures.

    图 5  CeTaN2O比热随温度的变化曲线, 插图是各个磁场下的低温比热

    Fig. 5.  Plot of specific heat vs. temperature. The inset shows the specific heat under various magnetic fields.

    图 6  CeTaN2O电阻率随温度的变化曲线. 插图是将100—300 K的电阻率用三维变程跳跃模型拟合得到的结果

    Fig. 6.  Temperature-dependent resistivity of CeTaN2O. The inset shows the fitting result using the 3D variable-range hopping model.

    表 1  CeTaN2O的精修结构参数

    Table 1.  Refined structure parameters of CeTaN2O.

    Space group Pnma
    a 5.69575(9) Rwp/% 3.28
    b 8.03326(8) Rp/% 2.30
    c 5.70427(8) χ2 2.71
    Atomic position(s)
    atom site x y z occ Uiso2
    Ce 4c 0.01792(8) 0.25 0.99101(2) 1 0.0086(5)
    Ta 4b 0.5 0 0 1 0.0055(9)
    N/O 4c 0.49062(2) 0.25 0.14377(9) 0.67/0.33 0.01
    N/O 8d 0.26950(2) 0.03833(9) 0.76871(6) 0.67/0.33 0.01
    下载: 导出CSV
    Baidu
  • [1]

    Tobías G, Oró-Solé J, Beltrán-Porter D, Fuertes A 2001 Inorg. Chem. 40 6867Google Scholar

    [2]

    Marchand R, Pors F, Laurent Y, Regreny O, Lostec J, Haussonne J M 1986 J. Phys. Colloques 47 C1Google Scholar

    [3]

    Kim Y I, Woodward P M, Baba-Kishi K Z, Tai C W 2004 Chem. Mater. 16 1267Google Scholar

    [4]

    Jorge A B, Oró-Solé J, Bea A M, Mufti N, Palstra T T M, Rodgers J A, Attfield J P, Fuertes A 2008 J. Am. Chem. Soc. 130 12572Google Scholar

    [5]

    Yang M, Oró-Solé J, Kusmartseva A, Fuertes A, Attfield J P 2010 J. Am. Chem. Soc. 132 4822Google Scholar

    [6]

    Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851Google Scholar

    [7]

    Li Y Q, Delsing A C A, de With G, Hintzen H T 2005 Chem. Mater. 17 3242Google Scholar

    [8]

    Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar

    [9]

    叶施亚, 李端, 李俊生, 曾良, 曹峰 2021 人工晶体学报 50 187

    Ye S Y, Li D, Li J S, Zeng L, F C 2021 J. Synth. Cryst. 50 187

    [10]

    Porter S H, Huang Z, Woodward P M 2014 Cryst. Growth Des. 14 117Google Scholar

    [11]

    Porter S H, Huang Z, Cheng Z, Avdeev M, Chen Z, Dou S, Woodward P M 2015 J. Solid State Chem. 226 279Google Scholar

    [12]

    Page K, Stoltzfus M W, Kim Y I, Proffen T, Woodward P M, Cheetham A K, Seshadri R 2007 Chem. Mater. 19 4037Google Scholar

    [13]

    Badding J V 1998 Annu. Rev. Mater. Sci. 28 631Google Scholar

    [14]

    Brazhkin V V 2007 High Pressure Res. 27 333Google Scholar

    [15]

    Rietveld H M 1969 J. Appl. Crystallogr. 2 65Google Scholar

    [16]

    Roth R S, Negas T, Parker H S, Minor D B, Jones C 1977 Mater. Res. Bull. 12 1173Google Scholar

    [17]

    Santoro A, Marezio M, Roth R S, Minor D 1980 J. Solid State Chem. 35 167Google Scholar

    [18]

    殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文 2017 66 030201Google Scholar

    Yin Y Y, Wang X, Deng H S, Zhou L, Dai J H, Long Y W 2017 Acta Phys. Sin. 66 030201Google Scholar

    [19]

    Deminami S, Kawamura Y, Chen Y Q, Kanazawa M, Hayashi J, Kuzuya T, Takeda K, Matsuda M, Sekine C 2017 J. Phys. Conf. Ser. 950 042032Google Scholar

    [20]

    Sekine C, Sai U, Hayashi J, Kawamura Y, Bauer E 2017 J. Phys. Conf. Ser. 950 042028Google Scholar

    [21]

    Kabeya N, Takahara S, Satoh N, Nakamura S, Katoh K, Ochiai A 2018 Phys. Rev. B 98 035131Google Scholar

    [22]

    Nakano T, Onuma S, Takeda N, Uhlířová K, Prokleška J, Sechovský V, Gouchi J, Uwatoko Y 2019 Phys. Rev. B 100 035107Google Scholar

    [23]

    Matin M, Kulkarni R, Thamizhavel A, Dhar S K, Provino A, Manfrinetti P 2017 J. Phys Condens. Matter 29 145601Google Scholar

    [24]

    Ajeesh M O, Kushwaha S K, Thomas S M, Thompson J D, Chan M K, Harrison N, Tomczak J M, Rosa P F S 2023 Phys. Rev. B 108 245125Google Scholar

    [25]

    Ravot D, Burlet P, Rossat-Mignod J, Tholence J L 1980 J. Phys. 41 1117Google Scholar

    [26]

    Mott N F 1969 Philos. Mag. 19 835Google Scholar

  • [1] 邓珊珊, 宋平, 刘潇贺, 姚森, 赵谦毅. 吉帕级单轴应力下Mn3Sn单晶的磁化率增强.  , 2024, 73(12): 127501. doi: 10.7498/aps.73.20240287
    [2] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变.  , 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [3] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究.  , 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [4] 卿煜林, 彭小莉, 文林, 胡爱元. 自旋为1/2的双层平方晶格阻挫模型的基态相变研究.  , 2021, (): . doi: 10.7498/aps.70.20211584
    [5] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究.  , 2021, (): . doi: 10.7498/aps.70.20211843
    [6] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响.  , 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [7] 方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣. 高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱.  , 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [8] 张东, 娄文凯, 常凯. 半导体极性界面电子结构的理论研究.  , 2019, 68(16): 167101. doi: 10.7498/aps.68.20191239
    [9] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性.  , 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [10] 梁文, 李泽明, 王璐颖, 陈琳, 李和平. 基于二水草酸镁(MgC2O42H2O)的无水碳酸镁(MgCO3)的高压制备和表征.  , 2017, 66(3): 036202. doi: 10.7498/aps.66.036202
    [11] 殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文. 多种有序钙钛矿结构的高压制备与特殊物性.  , 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [12] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控.  , 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [13] 郭静, 孙力玲. 压力下碱金属铁硒基超导体中的现象与物理.  , 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [14] 胡妮, 刘雍, 汤五丰, 裴玲, 方鹏飞, 熊锐, 石兢. La0.4Ca0.6MnO3中Mn-位Fe和Cr掺杂对磁性质的影响.  , 2014, 63(23): 237502. doi: 10.7498/aps.63.237502
    [15] 王美娜, 李英, 王天兴, 刘国栋. 正交多铁性材料DyMnO3的磁性质研究.  , 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [16] 梁志鹏, 董正超. 半导体/磁性d波超导隧道结中的散粒噪声.  , 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [17] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究.  , 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [18] 陈祥磊, 张杰, 杜淮江, 周先意, 叶邦角. 化合物半导体材料的正电子寿命计算.  , 2010, 59(1): 603-608. doi: 10.7498/aps.59.603
    [19] 赵文彬, 张冠军, 严 璋. 半导体闪络引起的材料表面破坏现象研究.  , 2008, 57(8): 5130-5137. doi: 10.7498/aps.57.5130
    [20] 熊翰, 车广灿, 姚玉书, 倪泳明, 董成, 贾顺莲. 掺Ca-(RPr)-123系列超导体的高压合成.  , 2001, 50(9): 1783-1786. doi: 10.7498/aps.50.1783
计量
  • 文章访问数:  2121
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 修回日期:  2024-01-26
  • 上网日期:  2024-01-31
  • 刊出日期:  2024-04-20

/

返回文章
返回
Baidu
map