搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于T形四周期谐振慢波结构的X波段高功率微波产生技术的理论与仿真

骆新耀 薛宇哲 徐彻 杜创洲 刘庆想

引用本文:
Citation:

基于T形四周期谐振慢波结构的X波段高功率微波产生技术的理论与仿真

骆新耀, 薛宇哲, 徐彻, 杜创洲, 刘庆想

Analysis and simulation of X-band high-power microwave generation based on T-shaped four-period slow-wave structure

Luo Xin-Yao, Xue Yu-Zhe, Xu Che, Du Chuang-Zhou, Liu Qing-Xiang
PDF
HTML
导出引用
  • 优化设计了T形四周期谐振慢波结构, 并进行了高频理论分析. 利用镜像法将T形波导单元进行脊波导化等效设计, 并通过等效电路分析了等效脊波导的高频特性, 由此进行T形波导的谐振频率与结构解析理论分析. 在此基础上构造了T形四周期谐振慢波结构, 对该结构进行色散特性分析, 确定谐振模式和频率, 得到了模式同步电压范围. 最后基于提出的T形周期谐振慢波结构进行对应的相对论扩展互作用辐射源的仿真验证. 通过三维粒子仿真模拟分析及优化设计, 在448 kV注电压、400 A注电流和0.4 T的均匀轴向磁场条件下, 得到了频率为9.8 GHz、平均输出功率71.4 MW的高功率微波, 对应电子效率为39.8%. 本文提出的以T形波导为单元的新型谐振慢波结构有效地利用较少周期实现高效率、高功率微波产生, 为高功率微波科学提供了有效的高频结构的紧凑化方案.
    In this study, a T-shaped, four-period resonant slow-wave structure is optimally designed, and its high-frequency performance is comprehensively analyzed in theory. By using the image theory, the T-shaped waveguide unit is transformed into an equivalent ridge waveguide configuration. The high-frequency characteristics of the equivalent ridge waveguide, such as resonant frequency and structure of the T-shaped waveguide are analyzed by using equivalent circuit theory. The analysis has confirmed that in the ridge waveguide, starting from the second-highest order mode, the frequency points of the even-order modes are very consistent with those of the T-shaped waveguide; however, the odd-order modes have no such corresponding mode in the T-shaped waveguide, for they do not fulfill the electric boundary conditions required by the image method. On this basis, a T-shaped four-period resonant slow-wave structure is constructed, and its dispersion characteristics are analyzed to determine the resonant modes and frequencies, as well as the range of mode synchronization voltages. Simulations are subsequently performed to validate the effectiveness of the relativistic extended interaction radiation source, which includes the novel T-shaped periodic resonant slow-wave structure. Advanced three-dimensional particle simulations, in conjunction with optimization techniques show that a high-power microwave output at a frequency of 9.8 GHz, is achieved, which can delivers an average power of 71.4 MW. This output is attained under the conditions of a 448 kV beam voltage, 400 A beam current, and a 0.4 T uniform axial magnetic field, with an electron efficiency reaching 39.8%. This structure, characterized by the T-shaped waveguide, is demonstrated to be capable of producing high-efficiency, high-power microwaves with fewer periods, presenting a compact and efficient solution for generating high-power microwaves in advanced scientific applications.
      通信作者: 徐彻, xuche@swjtu.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 2682023CX076)、高功率微波技术创新工作站开放课题(批准号: W031229901)和四川省自然科学基金(批准号: 24NSFSC7256)资助的课题.
      Corresponding author: Xu Che, xuche@swjtu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2682023CX076), the Open Topics Fund of the High-Power Microwave Technology Innovation Workstation (Grant No. W031229901), and the Natural Science Foundation of Sichuan Province, China (Grant No. 24NSFSC7256).
    [1]

    Benford J, Swegle J A 2008 高功率微波 (第二版)(中译本) (江伟华, 张弛 译) (北京: 国防工业出版社) 第 35—92 页

    Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (Chinese Version) (translated by Jiang W H, Zhang C) (Beijing: National Defense Industry Press) pp35–92

    [2]

    丁耀根 2020 真空电子技术 344 1Google Scholar

    Ding Y G 2020 Vacuum Electronics 344 1Google Scholar

    [3]

    Liu Z B, Huang H, Jin X, Li S F, Wang T F, Fang X H 2019 IEEE T. Electron. Dev. 66 722Google Scholar

    [4]

    Yang F X, Dang F C, Ge X J, He J T, Ju J C, Zhang X P 2022 IEEE T. Electron. Dev. 69 7074Google Scholar

    [5]

    Ju J C, Zhang J, Shu T, Zhong H H 2017 IEEE Electr. Device L. 38 270Google Scholar

    [6]

    杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧 2020 69 164102Google Scholar

    Yang D W, Chen C H, Shi Y C, Xiao R Z, Teng Y, Fan Z Q, Liu W Y, Song Z M, Sun J 2020 Acta Phys. Sin. 69 164102Google Scholar

    [7]

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses) [黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 67 088402]Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses)Google Scholar

    [8]

    王加松, 李洪涛, 李冬凤 2022 真空电子技术 5 24Google Scholar

    Wang J S, Li H T, Li D F 2022 Vac. Electron. 5 24Google Scholar

    [9]

    Li S F, Huang H, Duan Z Y, Basu B N, Liu Z B, He H, Wang Z L 2022 IEEE Electr. Device L. 43 131Google Scholar

    [10]

    宋玮, 刘国治, 林郁正, 邵浩 2008 强激光与粒子束 20 1322

    Song W, Liu G Z, Lin Y Z, Shao H 2008 High Power Laser Particle Beams 20 1322

    [11]

    刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 64 108404Google Scholar

    Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404Google Scholar

    [12]

    刘振帮, 雷禄容, 黄华, 金晓, 袁欢 2015 强激光与粒子束 27 142Google Scholar

    Liu Z B, Lei L R, Huang H, Jin X, Yuan H 2015 High Power Laser Part. Beams 27 142Google Scholar

    [13]

    黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰 2010 59 1907Google Scholar

    Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907Google Scholar

    [14]

    谢文球, 王自成, 罗积润, 刘青伦, 李现霞 2014 63 014101Google Scholar

    Xie W Q, Wang Z C, Luo J R, Liu Q L, Li X X 2014 Acta Phys. Sin. 63 014101Google Scholar

    [15]

    邢俊毅, 冯进军 2010 真空电子技术 2010 33Google Scholar

    Xian J Y, Fang J J 2010 Vac. Electron. 2010 33Google Scholar

    [16]

    王冬, 陈代兵, 秦奋, 范植开 2009 58 6962Google Scholar

    Wang D, Chen D B, Qin F, Fan Z K 2009 Acta Phys. Sin. 58 6962Google Scholar

    [17]

    葛行军, 钟辉煌, 钱宝良, 张军 2010 59 2645Google Scholar

    Ge X J, Zhong H H, Qian B L, Zhang J 2010 Acta Phys. Sin. 59 2645Google Scholar

    [18]

    刘振帮, 黄华, 金晓, 王腾钫, 李士锋 2020 69 218401Google Scholar

    Liu Z B, Huang H, Jin X, Wang T F, Li S F 2020 Acta Phys. Sin. 69 218401Google Scholar

    [19]

    Zhang P, Shu T, Dang F C, Ge X j, Song L L, Yang F X, He J T 2022 IEEE T. Plasma Sci. 50 3557Google Scholar

    [20]

    陈树强, 胡力, 林为干 1992 电子科技大学学报 21 11

    Chen S Q, Hu L, Lin W G 1992 J. UEST. China 21 11

    [21]

    Zhang K C, Wu Z H, Liu S G 2009 J. Infrared Milli Terahz. Waves 30 309Google Scholar

    [22]

    邵玉 2017 硕士学位及论文 (合肥: 合肥工业大学)

    Shao Y 2017 M. S. Thesis (Hefei: Hefei University of Technology

    [23]

    张开春 2009 硕士学位及论文 (成都: 电子科技大学)

    Zhang K C 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • 图 1  脊波导模型图

    Fig. 1.  Model diagram of ridged waveguide.

    图 2  T形波导和脊波导的电场分布 (a) T型波导基模; (b) 脊波导二阶模; (c) T形波导二阶模; (d) 脊波导四阶模

    Fig. 2.  Electric field distributions of T-shaped waveguide and ridged waveguide: (a) Fundamental mode of T-shaped waveguide; (b) second order mode of ridged waveguide; (c) second order mode of T-shaped waveguide; (d) fourth order mode of T-shaped waveguide

    图 3  两种模型的高次模频率对比

    Fig. 3.  Comparison of frequency between T-shaped waveguide and ridged waveguide.

    图 4  理论频率和仿真理论以及误差 (a)谐振频率随${y_{\text{g}}}$的变化; (b) 谐振频率随${x_{\text{g}}}$的变化; (c)谐振频率随${z_{\text{g}}}$的变化

    Fig. 4.  Theoretical frequency and simulated frequency and error: (a) The variation of frequency and error with ${y_{\text{g}}}$; (b) the variation of frequency and error with ${x_{\text{g}}}$; (c) the variation of frequency and error with ${z_{\text{g}}}$.

    图 5  T形四周期RSWS模型图

    Fig. 5.  Model of transit radiation oscillator with T-shaped slow-wave structure.

    图 6  电场强度分布图

    Fig. 6.  Distribution of electric field intensity.

    图 7  各腔的色散特性曲线 (a)第1腔; (b)第2腔; (c)第3腔; (d)第4腔

    Fig. 7.  Dispersion characteristics of each cavity: (a) The 1st cavity; (b) the 2nd cavity; (c) the 3rd cavity; (d) the 4th cavity

    图 8  不同电压下的输出功率和效率

    Fig. 8.  Output power and efficiency with different voltage.

    图 9  电子在z方向的速度分布

    Fig. 9.  Distribution of electron velocity in the z-direction.

    图 10  各腔在不同时刻的频谱图

    Fig. 10.  Frequency spectrum of each cavity in different time.

    图 11  输出功率

    Fig. 11.  Output power.

    图 12  输出腔频谱图

    Fig. 12.  Frequency spectrum of output port.

    表 1  T形波导和脊波导基本模型对应的谐振频率

    Table 1.  Frequency of T-shaped waveguide and ridged waveguide.

    ${f_{{\text{T - shaped}}}}$/GHz${f_{{\text{ridged}}}}$/GHz
    7.0945
    7.2794(图2(a))7.2813(图2(b))
    7.6319
    8.1455(图2(c))8.1461(图2(d))
    下载: 导出CSV

    表 2  几个典型高功率微波器件的性能参数

    Table 2.  Performance parameters of several typical HPM devices.

    文献波段长度$L$/mm功率$P$效率/%
    [8]X3303 MW>41
    [10]X2501.2 GW40
    [19]X2003.65 GW>30
    本文X164.372.8 MW39.84
    下载: 导出CSV
    Baidu
  • [1]

    Benford J, Swegle J A 2008 高功率微波 (第二版)(中译本) (江伟华, 张弛 译) (北京: 国防工业出版社) 第 35—92 页

    Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (Chinese Version) (translated by Jiang W H, Zhang C) (Beijing: National Defense Industry Press) pp35–92

    [2]

    丁耀根 2020 真空电子技术 344 1Google Scholar

    Ding Y G 2020 Vacuum Electronics 344 1Google Scholar

    [3]

    Liu Z B, Huang H, Jin X, Li S F, Wang T F, Fang X H 2019 IEEE T. Electron. Dev. 66 722Google Scholar

    [4]

    Yang F X, Dang F C, Ge X J, He J T, Ju J C, Zhang X P 2022 IEEE T. Electron. Dev. 69 7074Google Scholar

    [5]

    Ju J C, Zhang J, Shu T, Zhong H H 2017 IEEE Electr. Device L. 38 270Google Scholar

    [6]

    杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧 2020 69 164102Google Scholar

    Yang D W, Chen C H, Shi Y C, Xiao R Z, Teng Y, Fan Z Q, Liu W Y, Song Z M, Sun J 2020 Acta Phys. Sin. 69 164102Google Scholar

    [7]

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses) [黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 67 088402]Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses)Google Scholar

    [8]

    王加松, 李洪涛, 李冬凤 2022 真空电子技术 5 24Google Scholar

    Wang J S, Li H T, Li D F 2022 Vac. Electron. 5 24Google Scholar

    [9]

    Li S F, Huang H, Duan Z Y, Basu B N, Liu Z B, He H, Wang Z L 2022 IEEE Electr. Device L. 43 131Google Scholar

    [10]

    宋玮, 刘国治, 林郁正, 邵浩 2008 强激光与粒子束 20 1322

    Song W, Liu G Z, Lin Y Z, Shao H 2008 High Power Laser Particle Beams 20 1322

    [11]

    刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 64 108404Google Scholar

    Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404Google Scholar

    [12]

    刘振帮, 雷禄容, 黄华, 金晓, 袁欢 2015 强激光与粒子束 27 142Google Scholar

    Liu Z B, Lei L R, Huang H, Jin X, Yuan H 2015 High Power Laser Part. Beams 27 142Google Scholar

    [13]

    黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰 2010 59 1907Google Scholar

    Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907Google Scholar

    [14]

    谢文球, 王自成, 罗积润, 刘青伦, 李现霞 2014 63 014101Google Scholar

    Xie W Q, Wang Z C, Luo J R, Liu Q L, Li X X 2014 Acta Phys. Sin. 63 014101Google Scholar

    [15]

    邢俊毅, 冯进军 2010 真空电子技术 2010 33Google Scholar

    Xian J Y, Fang J J 2010 Vac. Electron. 2010 33Google Scholar

    [16]

    王冬, 陈代兵, 秦奋, 范植开 2009 58 6962Google Scholar

    Wang D, Chen D B, Qin F, Fan Z K 2009 Acta Phys. Sin. 58 6962Google Scholar

    [17]

    葛行军, 钟辉煌, 钱宝良, 张军 2010 59 2645Google Scholar

    Ge X J, Zhong H H, Qian B L, Zhang J 2010 Acta Phys. Sin. 59 2645Google Scholar

    [18]

    刘振帮, 黄华, 金晓, 王腾钫, 李士锋 2020 69 218401Google Scholar

    Liu Z B, Huang H, Jin X, Wang T F, Li S F 2020 Acta Phys. Sin. 69 218401Google Scholar

    [19]

    Zhang P, Shu T, Dang F C, Ge X j, Song L L, Yang F X, He J T 2022 IEEE T. Plasma Sci. 50 3557Google Scholar

    [20]

    陈树强, 胡力, 林为干 1992 电子科技大学学报 21 11

    Chen S Q, Hu L, Lin W G 1992 J. UEST. China 21 11

    [21]

    Zhang K C, Wu Z H, Liu S G 2009 J. Infrared Milli Terahz. Waves 30 309Google Scholar

    [22]

    邵玉 2017 硕士学位及论文 (合肥: 合肥工业大学)

    Shao Y 2017 M. S. Thesis (Hefei: Hefei University of Technology

    [23]

    张开春 2009 硕士学位及论文 (成都: 电子科技大学)

    Zhang K C 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • [1] 李志刚, 程立, 袁忠才, 汪家春, 时家明. 高功率微波作用下等离子体中的雪崩效应研究.  , 2017, 66(19): 195202. doi: 10.7498/aps.66.195202
    [2] 傅涛, 欧阳征标. 等离子体填充金属光子晶体Cherenkov辐射源模拟研究.  , 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [3] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理.  , 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [4] 魏进进, 周东方, 余道杰, 胡涛, 侯德亭, 张德伟, 雷雪, 胡俊杰. 高功率微波作用下O-离子解吸附产生种子电子过程.  , 2016, 65(5): 055202. doi: 10.7498/aps.65.055202
    [5] 王光强, 王建国, 李爽, 王雪锋, 陆希成, 宋志敏. 0.34 THz大功率过模表面波振荡器研究.  , 2015, 64(5): 050703. doi: 10.7498/aps.64.050703
    [6] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响.  , 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [7] 王冬, 徐莎, 曹延伟, 秦奋. 光子晶体高功率微波模式转换器设计.  , 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [8] 陈姝媛, 阮存军, 王勇. 带状注速调管多间隙扩展互作用输出腔等效电路的研究.  , 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [9] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计.  , 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [10] 刘洋, 徐进, 许雄, 沈飞, 魏彦玉, 黄民智, 唐涛, 王文祥, 宫玉彬. V形曲折矩形槽慢波结构的研究.  , 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [11] 李伟, 刘永贵, 杨建华. 同轴辐射相对论磁控管的功率合成研究.  , 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [12] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究.  , 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [13] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计.  , 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [14] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰. 长脉冲相对论扩展互作用腔振荡器的初步研究.  , 2010, 59(3): 1907-1912. doi: 10.7498/aps.59.1907
    [15] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究.  , 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [16] 王冬, 陈代兵, 秦奋, 范植开. 双频磁绝缘线振荡器二维周期结构研究.  , 2009, 58(10): 6962-6972. doi: 10.7498/aps.58.6962
    [17] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究.  , 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [18] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究.  , 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [19] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究.  , 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
    [20] 张 军, 钟辉煌. 高功率O型慢波器件的纵向模式选择研究.  , 2005, 54(1): 206-210. doi: 10.7498/aps.54.206
计量
  • 文章访问数:  1573
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-02-04
  • 上网日期:  2024-03-13
  • 刊出日期:  2024-05-05

/

返回文章
返回
Baidu
map