搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同力程排斥相互作用胶体粒子系统的摩擦特性

段浩炀 杨柯欣 曹义刚

引用本文:
Citation:

不同力程排斥相互作用胶体粒子系统的摩擦特性

段浩炀, 杨柯欣, 曹义刚

Friction characteristics of colloidal particle systems with repulsive interactions of different force ranges

Duan Hao-Yang, Yang Ke-Xin, Cao Yi-Gang
PDF
HTML
导出引用
  • 利用朗之万分子动力学, 数值研究了无序点钉扎衬底上二维胶体粒子系统的摩擦特性. 本文考虑了三种不同的模型胶体粒子系统, 每种系统中胶体粒子之间的相互作用均被模拟为两种不同力程的排斥势. 研究发现: 每种模型系统均存在两个最大静摩擦力(第一最大静摩擦力$ f_{{\text{c}}1}^{\text{d}} $和第二最大静摩擦力$ f_{{\text{c}}2}^{\text{d}} $); 力程相近的短程排斥相互作用之间的干涉会导致粒子间排斥增强, 从而导致$ f_{{\text{c}}1}^{\text{d}} $的明显降低和$ f_{{\text{c}}2}^{\text{d}} $以上沿外场驱动力方向上运动有序的加强. 本文的研究结果有助于揭示具有不同力程相互作用胶体粒子系统的摩擦机制.
    Friction occurs in various systems from the nanoscale to the geophysical scale and plays a crucial role. The microscopic mechanism of friction and the origin of the dynamic ordering in interacting particle systems are still controversial. Using Langevin simulations, we study the friction of two-dimensional colloids on the substrate with randomly distributed point-like pinning centers. We consider three different model colloidal systems, and in each system the colloidal particles interact with each other through repulsive interactions that have two different force ranges. We find two maximum static friction forces (the first maximum static friction $ f_{{\text{c}}1}^{\text{d}} $ and the second maximum static friction $ f_{{\text{c2}}}^{\text{d}} $). The interference between short-range repulsive interactions with similar force ranges in model-3 colloidal system can lead the repulsion between particles near pinning centers to significantly increase, resulting in a decrease in $ f_{{\text{c}}1}^{\text{d}} $ and an enhanced orderly movement along the direction of external driving forces above $ f_{{\text{c2}}}^{\text{d}} $. The results provide guidance for revealing the friction mechanism in the colloidal particles with interactions that have different force ranges.
      通信作者: 曹义刚, physycao@zzu.edu.cn
    • 基金项目: 河南省高等学校重点科研项目 (批准号: 22A140029)、河南省自然科学基金(批准号: 222300420552)和河南省研究生教育改革与质量提升工程项目(批准号: YJS2024KC06)资助的课题.
      Corresponding author: Cao Yi-Gang, physycao@zzu.edu.cn
    • Funds: Project supported by the Key Scientific Research Projects of Colleges and Universities in Henan Province, China (Grant No. 22A140029), the Natural Science Foundation of Henan Province, China (Grant No. 222300420552), and the Postgraduate Education Reform and Quality Improvement Project of Henan Province, China (Grant No. YJS2024KC06).
    [1]

    Vanossi A, Manini N, Urbakh M, Zapperi S, Tosatti E 2013 Rev. Mod. Phys. 85 529Google Scholar

    [2]

    Michael U, Ernst M 2010 Nat. Mater. 9 8Google Scholar

    [3]

    Zhang Z Y, Wu C G, Zhang Q, Cao Y G 2020 Friction 8 666Google Scholar

    [4]

    Ramaswamy M, Lin N Y C, Leahy B D, Ness C, Fiore A M, Swan J W, Cohen I 2017 Phys. Rev. X 7 041005Google Scholar

    [5]

    Lerose A, Žunkovič B, Marino J, Gambassi A, Silva A 2019 Phys. Rev. B 99 045128Google Scholar

    [6]

    Driver T, Cooper B, Ayers R, Pipkorn R, Patchkovskii S, Averbukh V, Klug D R, Marangos J P, Frasinski L J, Edelson-Averbukh M 2020 Phys. Rev. X 10 041004Google Scholar

    [7]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [8]

    Zhang T H, Kuipers B W M, Tian W D, Groenewold J, Kege W K 2015 Soft Matter 11 297Google Scholar

    [9]

    Gilpin W, Bull M S, Prakash M 2020 Nat. Rev. Phys. 2 74Google Scholar

    [10]

    Arora P, Sood A K, Ganapathy R 2021 Sci. Adv. 7 eabd0331Google Scholar

    [11]

    Chen J X, Chen G Y, Kapral R 2018 Sci. Adv. 5 1800028Google Scholar

    [12]

    Cui R F, Chen Q H, Chen J X 2020 Nanoscale 12 12275Google Scholar

    [13]

    Mognetti B M, Šarić A, Angioletti-Uberti S, Cacciuto A, Valeriani C, Frenkel D 2013 Phys. Rev. Lett. 111 245702Google Scholar

    [14]

    Solon A P, Stenhammar J, Wittkowski R, Kardar M, Kafri Y, Cates M E, Tailleur J 2015 Phys. Rev. Lett. 114 198301Google Scholar

    [15]

    Cao T T, Li Z, Lü W L, Cao Y G 2017 J. Phys. Commun. 1 045008Google Scholar

    [16]

    Alshareedah I, Kaur T, Ngo J, Seppala H, Kounatse L D, Wang W, Moosa M M, Banerjee P R 2019 J. Am. Chem. Soc. 141 14593Google Scholar

    [17]

    Mondal M, Mishra C K, Banerjee R, Narasimhan S, Sood A K, Ganapathy R 2020 Sci. Adv. 6 eaay8418Google Scholar

    [18]

    Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C, Bocquet L 2012 Phys. Rev. Lett. 108 268303Google Scholar

    [19]

    Velasco A C, Abkenar M, Gompper G, Auth T 2018 Phys. Rev. E 98 022605Google Scholar

    [20]

    Rudner M S, Lindner N H 2020 Nat. Rev. Phys. 2 229Google Scholar

    [21]

    Wittmann R, Brader J M, Sharma A, Marconi U M B 2018 Phys. Rev. E 97 012601Google Scholar

    [22]

    Skou M G, Skov T G, Jorgensen N B, Nielsen K K, Camacho-Guardian A, Pohl T, Bruun G M, Arlt J J 2021 Nat. Phys. 17 731Google Scholar

    [23]

    Digregorio P, Levis D, Pagonabarraga I 2018 Phys. Rev. Lett. 121 098003Google Scholar

    [24]

    Park J, Zhao H B, Kang S D, Lim K, Chen C C, Yu Y S, Braatz R D, Shapiro D A, Hong J, Toney M F, Bazant M Z, Chueh W C 2021 Nat. Mater. 20 991Google Scholar

    [25]

    Chubak I, Likos C N, Kremer K, Smrek J 2020 Phys. Rev. Res. 2 043249Google Scholar

    [26]

    Shi X Q, Fausti G, Chaté H, Nardini C, Solon A 2020 Phys. Rev. Lett. 125 168001Google Scholar

    [27]

    Chattoraj J, Ciamarra M P 2020 Phys. Rev. Lett. 124 028001Google Scholar

    [28]

    Malescio G, Pellicane G 2003 Nat. Mater. 2 97Google Scholar

    [29]

    Delfau J B, Ollivier H, López C, Blasius B, Hernández-García E 2016 Phys. Rev. E 94 042120Google Scholar

    [30]

    Daza F A G, Cuetos A, Patti A 2020 Phys. Rev. E 102 013302Google Scholar

    [31]

    Li X D, Wu C G, Cao T T, Cao Y G 2019 Physica A 515 279Google Scholar

    [32]

    Fisher D S 1980 Phys. Rev. B 22 1190Google Scholar

  • 图 1  三种模型胶体粒子系统中粒子间相互作用势随粒子间距离的变化

    Fig. 1.  Distance dependences of the interaction potentials in three model systems.

    图 2  库仑势、磁偶极子势以及库仑+磁偶极子势随距离的函数关系曲线

    Fig. 2.  Distance dependences of the Coulomb, magnetic dipole and Coulomb + magnetic dipole potentials.

    图 3  磁偶极子势、屏蔽库仑势以及磁偶极子+屏蔽库仑势随距离的函数关系曲线

    Fig. 3.  Distance dependences of the magnetic dipole, screening Coulomb and magnetic dipole + screening Coulomb potentials.

    图 4  屏蔽库仑势、排斥核势以及屏蔽库仑+排斥核势随距离的函数关系曲线

    Fig. 4.  Distance dependences of the screening Coulomb, nuclear and screening Coulomb + nuclear potentials.

    图 5  平均速度随外场驱动力的变化

    Fig. 5.  Driving force dependence of the average velocity.

    图 6  模型1 (a), (a′)、模型2 (b), ( b′)和模型3 (c), (c′)中, 胶体粒子分别在第一最大静摩擦力$ f_{{\text{c}}1}^{\text{d}} $下方(a)—(c)和上方(a′)—(c′)的位形快照, 钉扎中心用×号表示

    Fig. 6.  Snapshots of particle coordinates below (a)–(c) and above (a′)–(c′) the first maximum static friction $f_{{\mathrm{c}}1}^{\mathrm{d}}$ for models 1 (a), (a′), 2 (b), ( b′) and 3 (c), (c′). The pinning centers are denoted by crosses.

    图 7  模型1 ((a), (a′))、模型2 ((b), (b′))和模型3 ((c), (c′))胶体粒子系统在第二最大静摩擦力$f_{{\mathrm{c}}2}^{\mathrm{d}}$之上的运动位形和结构因子

    Fig. 7.  Flow trajectories of particles and corresponding structure factors along $x$ direction above the second maximum static friction $f_{{\mathrm{c}}2}^{\mathrm{d}}$ for model 1 ((a) and (a′)), model 2 ((b) and (b′)) and model 3 ((c) and (c′)) systems, respectively.

    Baidu
  • [1]

    Vanossi A, Manini N, Urbakh M, Zapperi S, Tosatti E 2013 Rev. Mod. Phys. 85 529Google Scholar

    [2]

    Michael U, Ernst M 2010 Nat. Mater. 9 8Google Scholar

    [3]

    Zhang Z Y, Wu C G, Zhang Q, Cao Y G 2020 Friction 8 666Google Scholar

    [4]

    Ramaswamy M, Lin N Y C, Leahy B D, Ness C, Fiore A M, Swan J W, Cohen I 2017 Phys. Rev. X 7 041005Google Scholar

    [5]

    Lerose A, Žunkovič B, Marino J, Gambassi A, Silva A 2019 Phys. Rev. B 99 045128Google Scholar

    [6]

    Driver T, Cooper B, Ayers R, Pipkorn R, Patchkovskii S, Averbukh V, Klug D R, Marangos J P, Frasinski L J, Edelson-Averbukh M 2020 Phys. Rev. X 10 041004Google Scholar

    [7]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Rev. Mod. Phys. 85 1143Google Scholar

    [8]

    Zhang T H, Kuipers B W M, Tian W D, Groenewold J, Kege W K 2015 Soft Matter 11 297Google Scholar

    [9]

    Gilpin W, Bull M S, Prakash M 2020 Nat. Rev. Phys. 2 74Google Scholar

    [10]

    Arora P, Sood A K, Ganapathy R 2021 Sci. Adv. 7 eabd0331Google Scholar

    [11]

    Chen J X, Chen G Y, Kapral R 2018 Sci. Adv. 5 1800028Google Scholar

    [12]

    Cui R F, Chen Q H, Chen J X 2020 Nanoscale 12 12275Google Scholar

    [13]

    Mognetti B M, Šarić A, Angioletti-Uberti S, Cacciuto A, Valeriani C, Frenkel D 2013 Phys. Rev. Lett. 111 245702Google Scholar

    [14]

    Solon A P, Stenhammar J, Wittkowski R, Kardar M, Kafri Y, Cates M E, Tailleur J 2015 Phys. Rev. Lett. 114 198301Google Scholar

    [15]

    Cao T T, Li Z, Lü W L, Cao Y G 2017 J. Phys. Commun. 1 045008Google Scholar

    [16]

    Alshareedah I, Kaur T, Ngo J, Seppala H, Kounatse L D, Wang W, Moosa M M, Banerjee P R 2019 J. Am. Chem. Soc. 141 14593Google Scholar

    [17]

    Mondal M, Mishra C K, Banerjee R, Narasimhan S, Sood A K, Ganapathy R 2020 Sci. Adv. 6 eaay8418Google Scholar

    [18]

    Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C, Bocquet L 2012 Phys. Rev. Lett. 108 268303Google Scholar

    [19]

    Velasco A C, Abkenar M, Gompper G, Auth T 2018 Phys. Rev. E 98 022605Google Scholar

    [20]

    Rudner M S, Lindner N H 2020 Nat. Rev. Phys. 2 229Google Scholar

    [21]

    Wittmann R, Brader J M, Sharma A, Marconi U M B 2018 Phys. Rev. E 97 012601Google Scholar

    [22]

    Skou M G, Skov T G, Jorgensen N B, Nielsen K K, Camacho-Guardian A, Pohl T, Bruun G M, Arlt J J 2021 Nat. Phys. 17 731Google Scholar

    [23]

    Digregorio P, Levis D, Pagonabarraga I 2018 Phys. Rev. Lett. 121 098003Google Scholar

    [24]

    Park J, Zhao H B, Kang S D, Lim K, Chen C C, Yu Y S, Braatz R D, Shapiro D A, Hong J, Toney M F, Bazant M Z, Chueh W C 2021 Nat. Mater. 20 991Google Scholar

    [25]

    Chubak I, Likos C N, Kremer K, Smrek J 2020 Phys. Rev. Res. 2 043249Google Scholar

    [26]

    Shi X Q, Fausti G, Chaté H, Nardini C, Solon A 2020 Phys. Rev. Lett. 125 168001Google Scholar

    [27]

    Chattoraj J, Ciamarra M P 2020 Phys. Rev. Lett. 124 028001Google Scholar

    [28]

    Malescio G, Pellicane G 2003 Nat. Mater. 2 97Google Scholar

    [29]

    Delfau J B, Ollivier H, López C, Blasius B, Hernández-García E 2016 Phys. Rev. E 94 042120Google Scholar

    [30]

    Daza F A G, Cuetos A, Patti A 2020 Phys. Rev. E 102 013302Google Scholar

    [31]

    Li X D, Wu C G, Cao T T, Cao Y G 2019 Physica A 515 279Google Scholar

    [32]

    Fisher D S 1980 Phys. Rev. B 22 1190Google Scholar

  • [1] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟.  , 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [2] 陈康, 沈煜年. 软体机器人用多孔聚合物水凝胶的摩擦接触非线性行为.  , 2021, 70(12): 120201. doi: 10.7498/aps.70.20202134
    [3] 李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平. TiO2纳米粉在水中通过摩擦还原CO2.  , 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [4] 刘心卓, 王华光. 椭球胶体在圆球胶体体系中扩散行为的实验研究.  , 2020, 69(23): 238201. doi: 10.7498/aps.69.20201301
    [5] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟.  , 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [6] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶.  , 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [7] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响.  , 2018, 67(7): 076101. doi: 10.7498/aps.67.20180311
    [8] 陈科. 胶体在非晶研究中的应用.  , 2017, 66(17): 178201. doi: 10.7498/aps.66.178201
    [9] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟.  , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [10] 王理林, 王志军, 林鑫, 王锦程, 黄卫东. 冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响.  , 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [11] 马红孺. 胶体排空相互作用理论与计算.  , 2016, 65(18): 184701. doi: 10.7498/aps.65.184701
    [12] 张天辉, 曹镜声, 梁颖, 刘向阳. 胶体在基础物理研究中的应用.  , 2016, 65(17): 176401. doi: 10.7498/aps.65.176401
    [13] 李瑞, 孙丹海. 缺陷对碳纳米管摩擦与运动行为的影响.  , 2014, 63(5): 056101. doi: 10.7498/aps.63.056101
    [14] 贾汝娟, 王苍龙, 杨阳, 苟学强, 陈建敏, 段文山. 二维Frenkel-Kontorova模型中六角对称结构的摩擦现象.  , 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [15] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究.  , 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [16] 杨阳, 王苍龙, 段文山, 石玉仁, 陈建敏. 基底势函数的无序性对静摩擦力的影响.  , 2012, 61(13): 130501. doi: 10.7498/aps.61.130501
    [17] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟.  , 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [18] 陈根余, 吴汉华, 李乐, 常鸿, 唐元广. 电学参数对胶体中工业纯钛微弧氧化膜特性的影响.  , 2010, 59(3): 1958-1963. doi: 10.7498/aps.59.1958
    [19] 龚中良, 黄 平. 界面摩擦过程非连续能量耗散机理研究.  , 2008, 57(4): 2358-2362. doi: 10.7498/aps.57.2358
    [20] 许中明, 黄 平. 摩擦微观能量耗散机理的复合振子模型研究.  , 2006, 55(5): 2427-2432. doi: 10.7498/aps.55.2427
计量
  • 文章访问数:  1212
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-25
  • 修回日期:  2024-06-05
  • 上网日期:  2024-06-27
  • 刊出日期:  2024-08-05

/

返回文章
返回
Baidu
map