-
本文研究了带有整体单极的Reissner-Nordstrom-AdS黑洞在扩展相空间中出射粒子的量子隧穿辐射过程. 其中, 将宇宙学参数视为动态变量而不同于之前研究工作中将其视为常数而忽略其贡献. 具体地, 在计算出射粒子隧穿率时将宇宙学参数引入计算并将其解释为热力学压强. 计算结果表明, 出射粒子的隧穿率与粒子出射前后黑洞的贝肯斯坦-霍金熵差成正比, 辐射谱偏离了纯热谱, 该结果与将宇宙学参数视为常数的情况完全相同. 这意味着在扩展相空间中可以得到粒子的隧穿概率, 并且隧穿过程不依赖于热力学状参量, 这一工作自然地进一步将霍金辐射推广到了带有整体单极Reissner-Nordstrom-AdS黑洞扩展相空间中. 结果表明, 整体单极子尽管影响粒子的动力学行为和热力学量, 但并不影响熵变和隧穿率.In recent years, thermodynamics and phase transitions of black holes in extended phase space have been extensively studied. The results show that the original first law of thermodynamics needs revising and new phase transitions will appear. However, so far, Hawking tunneling radiation has not been widely studied in the extended phase space. In particular, whether the tunneling radiation probability changes at this time is still uncertain. This work focuses on this topic, that is, to calculate the specific value of the tunneling probability in the extended phase space and ascertains whether the results obtained in the normal phase space are consistent with those in the extended phase space. The methods used herein are described below. Taking Reissner-Nordstrom-AdS black holes with global monopole for example, the cosmological parameters are regarded as dynamic variables, which is different from previous treatment methods that regard them as constants and ignore their contributions to the tunneling probability. In particular, cosmological parameters are introduced and regarded as thermodynamic pressure when the tunneling probability is calculated, and their contribution to the tunneling probability is considered. In the work the tunneling process of mass particles is mainly studied. The outgoing particles are viewed as spherical de Broglie waves, and then the relative phase velocity and group velocity are calculated. The geodesic equation is obtained according to the relationship between the two velocities, and the tunneling probability is calculated from the geodesic equation. It is concluded that the results show that the tunneling probability of the ingoing particles is proportional to the difference in the Bekenstein-Hawking entropy of the black hole before and after the particles tunnel, and the radiation spectrum deviates from the pure thermal spectrum, which is exactly the same as the case that the cosmological parameters are treated as constants. This means that the tunneling probability of particles can be obtained in the extended phase space, and the tunneling process does not depend on thermodynamic parameters. In addition, it is found that although the global monopole affects the dynamical behavior and thermodynamic quantity of the particle, it does not affect the entropy change or tunneling rate. In other words, the conclusion that the tunneling probability in extended phase space is exactly the same as that in normal phase space does not depend on the space-time topology.
-
Keywords:
- Hawking radiation /
- cosmology parameters /
- thermodynamic pressure /
- global monopole
[1] Akiyama K, Alberdi A, Alef W, et al. 2019 Astrophys. J. Lett. 875 L1
Google Scholar
[2] Hawking S W 1974 Nature 248 30
Google Scholar
[3] Hawking S W 1975 Commun. Math. Phys. 43 199
Google Scholar
[4] Christodoulou D 1970 Phys. Rev. Lett. 25 1596
Google Scholar
[5] BardeenJ M 1970 Nature 226 64
Google Scholar
[6] Bekenstein J D 1973 Phys. Rev. D 7 2333
Google Scholar
[7] Damour T, Ruffini R 1976 Phys. Rev. D 14 332
Google Scholar
[8] Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752
Google Scholar
[9] York J W 1986 Phys. Rev. D 33 2091
Google Scholar
[10] Whiting B F, York J W 1988 Phys. Rev. Lett. 61 1336
Google Scholar
[11] Punsly B 1992 Phys. Rev. D 46 1288
Google Scholar
[12] Srinivasan K, Padmanabhan T 1999 Phys. Rev. D 60 024007
Google Scholar
[13] Robinson S P, Wilczek F 2005 Phys. Rev. Lett. 95 011303
Google Scholar
[14] Han Y W, Zhang J Y 2010 Phys. Lett. B 692 74
Google Scholar
[15] Han Y W, Chen G 2012 Phys. Lett. B 714 127
Google Scholar
[16] ParikhM K, Wilczek F 2000 Phys. Rev. Lett. 85 5042
Google Scholar
[17] Hemming S, Keski-Vakkuri E 2001 Phys. Rev. D 64 044006
Google Scholar
[18] Vagenas E C 2002 Phys. Lett. B 533 302
Google Scholar
[19] Medved A J M 2002 Phys. Rev. D 66 124009
Google Scholar
[20] Setare M R, Vagenas E C 2004 Phys. Lett. B 584 127
Google Scholar
[21] Parikh M 2004 Int. J. Mod. Phys. D 13 2351
Google Scholar
[22] Zhang J, Zhao Z 2005 Nucl. Phys. B 725 173
Google Scholar
[23] Medved A J M, Vagenas E C 2005 Mod. Phys. Lett. A 20 2449
Google Scholar
[24] Zhang J, Zhao Z 2011 Phys. Rev. D 83 064028
Google Scholar
[25] 韩亦文 2005 54 5018
Google Scholar
Han Y W 2005 Acta Phys. Sin. 54 5018
Google Scholar
[26] Han Y W 2005 Chin. Phys. Lett. 22 2769
Google Scholar
[27] 张靖仪, 赵峥 2006 55 3796
Google Scholar
Zhang J Y, Zhao Z 2006 Acta Phys. Sin. 55 3796
Google Scholar
[28] Liu W 2006 Phys. Lett. B 634 541
Google Scholar
[29] Han Y W 2007 Chin. Phys. 16 0923
Google Scholar
[30] HanY W, Yang S Z 2007 Commun. Theor. Phys. 47 1145
Google Scholar
[31] Jiang Q Q, Wu S Q 2006 Phys. Lett. B 635 151
Google Scholar
[32] Jiang Q Q, Wu S Q, Cai X 2006 Phys. Rev. D 73 064003
Google Scholar
[33] Jiang Q Q, Cai X 2009 JHEP 11 110
Google Scholar
[34] Ding C, Wang M, Jing J 2009 Phys. Lett. B 676 99
Google Scholar
[35] Zeng X X, Yang S Z 2009 Chin. Phys. B 18 462
Google Scholar
[36] Christina S, Singh T I 2021 Gen Relativ Gravit 53 43
Google Scholar
[37] Vishnulal C, Basak S, Das S 2021 Phys. Rev. D 104 104011
Google Scholar
[38] Cai R G, Cao L M, Li L, Yang R Q 2013 JHEP2013 5
Google Scholar
[39] Johnson C V 2014 Class. Quant. Grav. 31 205002
Google Scholar
[40] Caceres E, Nguyen P H, Pedraza J F 2015 JHEP 2015 184
Google Scholar
[41] Mandal A, Samanta S, Majhi B R 2016 Phys. Rev. D 94 064069
Google Scholar
[42] Caldarelli M M, Cognola G, Klemm D 2000 Class. Quantum Grav. 17 399
Google Scholar
[43] Hendi S H, Panahiyan S, EslamPanah B, Momennia M 2016 Ann. Phys. (Berlin) 528 819
Google Scholar
[44] Kastor D, Ray S, Traschen J 2009 Class. Quant. Grav. 26 195011
Google Scholar
[45] Kubizňák D, Mann R B 2012 JHEP 2012 33
Google Scholar
[46] DolanB P 2011 Class. Quant. Grav. 28 125020
Google Scholar
[47] Cvetič M, Gibbons G W, Kubizňák D 2011 Phys. Rev. D 84 024037
Google Scholar
[48] Altamirano N, Kubizňák D, Mann R B 2013 Phys. Rev. D 88 101502
Google Scholar
[49] Dolan B P, Kostouki A, Kubizňák D 2014 Class. Quant. Grav. 31 242001
Google Scholar
[50] Hennigar R A, Mann R B, Tjoa E 2017 Phys. Rev. Lett. 118 021301
Google Scholar
[51] Wei S W, Liu Y X, Mann R B 2019 Phys. Rev. Lett. 123 071103
Google Scholar
[52] Zeng X X, Han Y W, Che D Y 2019 Chin. Phys. C 43 105104
Google Scholar
[53] Han Y W, Zeng X X, Hong Y 2019 Eur. Phys. J. C 79 252
Google Scholar
[54] Ren Z X, Zeng X X, Han Y W, Hu C 2023 Nucl. Phys. B 990 116153
Google Scholar
[55] Barriola M, Vilenkin A 1989 Phys. Rev. Lett. 63 341
Google Scholar
[56] Yu H W 1994 Nucl. Phys. B 430 427
Google Scholar
[57] He A, Tao J, Wang P, Xue Y, Zhang L 2022 Eur. Phys. J. C 82 683
Google Scholar
[58] Chen S, Wang L, Ding C, et al. 2010 Nucl. Phys. B 836 222
Google Scholar
[59] 曾晓雄, 胡馨匀, 韩亦文, 刘显明 2015 中国科学: 物理学 力学 天文学 45 080401
Google Scholar
Zeng X X, Hu X Y, Han Y W, Liu X M 2015 Sci. China-Phys. Mech. Astron. 45 080401
Google Scholar
[60] 周亮, 张靖仪 2010 59 4380
Google Scholar
Zhou L, Zhang J Y 2010 Acta Phys. Sin. 59 4380
Google Scholar
[61] Gao C J, Sen Y G 2002 Chin. Phys. Lett. 19 477
Google Scholar
[62] Painlevé P 1921 Comptes Rendus Academie des Sciences (Serie Non Specifiee) 173 677
[63] Gullstrand A 1922 Arkiv. Mat. Astron. Fys. 16 15
-
[1] Akiyama K, Alberdi A, Alef W, et al. 2019 Astrophys. J. Lett. 875 L1
Google Scholar
[2] Hawking S W 1974 Nature 248 30
Google Scholar
[3] Hawking S W 1975 Commun. Math. Phys. 43 199
Google Scholar
[4] Christodoulou D 1970 Phys. Rev. Lett. 25 1596
Google Scholar
[5] BardeenJ M 1970 Nature 226 64
Google Scholar
[6] Bekenstein J D 1973 Phys. Rev. D 7 2333
Google Scholar
[7] Damour T, Ruffini R 1976 Phys. Rev. D 14 332
Google Scholar
[8] Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752
Google Scholar
[9] York J W 1986 Phys. Rev. D 33 2091
Google Scholar
[10] Whiting B F, York J W 1988 Phys. Rev. Lett. 61 1336
Google Scholar
[11] Punsly B 1992 Phys. Rev. D 46 1288
Google Scholar
[12] Srinivasan K, Padmanabhan T 1999 Phys. Rev. D 60 024007
Google Scholar
[13] Robinson S P, Wilczek F 2005 Phys. Rev. Lett. 95 011303
Google Scholar
[14] Han Y W, Zhang J Y 2010 Phys. Lett. B 692 74
Google Scholar
[15] Han Y W, Chen G 2012 Phys. Lett. B 714 127
Google Scholar
[16] ParikhM K, Wilczek F 2000 Phys. Rev. Lett. 85 5042
Google Scholar
[17] Hemming S, Keski-Vakkuri E 2001 Phys. Rev. D 64 044006
Google Scholar
[18] Vagenas E C 2002 Phys. Lett. B 533 302
Google Scholar
[19] Medved A J M 2002 Phys. Rev. D 66 124009
Google Scholar
[20] Setare M R, Vagenas E C 2004 Phys. Lett. B 584 127
Google Scholar
[21] Parikh M 2004 Int. J. Mod. Phys. D 13 2351
Google Scholar
[22] Zhang J, Zhao Z 2005 Nucl. Phys. B 725 173
Google Scholar
[23] Medved A J M, Vagenas E C 2005 Mod. Phys. Lett. A 20 2449
Google Scholar
[24] Zhang J, Zhao Z 2011 Phys. Rev. D 83 064028
Google Scholar
[25] 韩亦文 2005 54 5018
Google Scholar
Han Y W 2005 Acta Phys. Sin. 54 5018
Google Scholar
[26] Han Y W 2005 Chin. Phys. Lett. 22 2769
Google Scholar
[27] 张靖仪, 赵峥 2006 55 3796
Google Scholar
Zhang J Y, Zhao Z 2006 Acta Phys. Sin. 55 3796
Google Scholar
[28] Liu W 2006 Phys. Lett. B 634 541
Google Scholar
[29] Han Y W 2007 Chin. Phys. 16 0923
Google Scholar
[30] HanY W, Yang S Z 2007 Commun. Theor. Phys. 47 1145
Google Scholar
[31] Jiang Q Q, Wu S Q 2006 Phys. Lett. B 635 151
Google Scholar
[32] Jiang Q Q, Wu S Q, Cai X 2006 Phys. Rev. D 73 064003
Google Scholar
[33] Jiang Q Q, Cai X 2009 JHEP 11 110
Google Scholar
[34] Ding C, Wang M, Jing J 2009 Phys. Lett. B 676 99
Google Scholar
[35] Zeng X X, Yang S Z 2009 Chin. Phys. B 18 462
Google Scholar
[36] Christina S, Singh T I 2021 Gen Relativ Gravit 53 43
Google Scholar
[37] Vishnulal C, Basak S, Das S 2021 Phys. Rev. D 104 104011
Google Scholar
[38] Cai R G, Cao L M, Li L, Yang R Q 2013 JHEP2013 5
Google Scholar
[39] Johnson C V 2014 Class. Quant. Grav. 31 205002
Google Scholar
[40] Caceres E, Nguyen P H, Pedraza J F 2015 JHEP 2015 184
Google Scholar
[41] Mandal A, Samanta S, Majhi B R 2016 Phys. Rev. D 94 064069
Google Scholar
[42] Caldarelli M M, Cognola G, Klemm D 2000 Class. Quantum Grav. 17 399
Google Scholar
[43] Hendi S H, Panahiyan S, EslamPanah B, Momennia M 2016 Ann. Phys. (Berlin) 528 819
Google Scholar
[44] Kastor D, Ray S, Traschen J 2009 Class. Quant. Grav. 26 195011
Google Scholar
[45] Kubizňák D, Mann R B 2012 JHEP 2012 33
Google Scholar
[46] DolanB P 2011 Class. Quant. Grav. 28 125020
Google Scholar
[47] Cvetič M, Gibbons G W, Kubizňák D 2011 Phys. Rev. D 84 024037
Google Scholar
[48] Altamirano N, Kubizňák D, Mann R B 2013 Phys. Rev. D 88 101502
Google Scholar
[49] Dolan B P, Kostouki A, Kubizňák D 2014 Class. Quant. Grav. 31 242001
Google Scholar
[50] Hennigar R A, Mann R B, Tjoa E 2017 Phys. Rev. Lett. 118 021301
Google Scholar
[51] Wei S W, Liu Y X, Mann R B 2019 Phys. Rev. Lett. 123 071103
Google Scholar
[52] Zeng X X, Han Y W, Che D Y 2019 Chin. Phys. C 43 105104
Google Scholar
[53] Han Y W, Zeng X X, Hong Y 2019 Eur. Phys. J. C 79 252
Google Scholar
[54] Ren Z X, Zeng X X, Han Y W, Hu C 2023 Nucl. Phys. B 990 116153
Google Scholar
[55] Barriola M, Vilenkin A 1989 Phys. Rev. Lett. 63 341
Google Scholar
[56] Yu H W 1994 Nucl. Phys. B 430 427
Google Scholar
[57] He A, Tao J, Wang P, Xue Y, Zhang L 2022 Eur. Phys. J. C 82 683
Google Scholar
[58] Chen S, Wang L, Ding C, et al. 2010 Nucl. Phys. B 836 222
Google Scholar
[59] 曾晓雄, 胡馨匀, 韩亦文, 刘显明 2015 中国科学: 物理学 力学 天文学 45 080401
Google Scholar
Zeng X X, Hu X Y, Han Y W, Liu X M 2015 Sci. China-Phys. Mech. Astron. 45 080401
Google Scholar
[60] 周亮, 张靖仪 2010 59 4380
Google Scholar
Zhou L, Zhang J Y 2010 Acta Phys. Sin. 59 4380
Google Scholar
[61] Gao C J, Sen Y G 2002 Chin. Phys. Lett. 19 477
Google Scholar
[62] Painlevé P 1921 Comptes Rendus Academie des Sciences (Serie Non Specifiee) 173 677
[63] Gullstrand A 1922 Arkiv. Mat. Astron. Fys. 16 15
计量
- 文章访问数: 2432
- PDF下载量: 47
- 被引次数: 0