搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

选区外延生长的PbTe-超导杂化纳米线: 一个可能实现拓扑量子计算的新体系

杨帅 张浩 何珂

引用本文:
Citation:

选区外延生长的PbTe-超导杂化纳米线: 一个可能实现拓扑量子计算的新体系

杨帅, 张浩, 何珂

Selective-area-epitaxied PbTe-superconductor hybrid nanowires: A new candidate system to realize topological quantum computing

Yang Shuai, Zhang Hao, He Ke
PDF
HTML
导出引用
  • 半导体-超导体杂化纳米线是用于研究马约拉纳零能模和拓扑量子计算的主要平台之一, 而基于III-V族半导体InAs和 InSb的纳米线则是当前此方向研究的主流材料体系. 尽管经过多年制备技术的改进和优化, 样品中过多的缺陷和杂质仍是阻碍此方向进一步发展的核心问题. 近年来, 一个新的马约拉纳纳米线候选体系——IV-VI族半导体PbTe-超导杂化纳米线吸引了很大关注并获得了快速的研究进展. PbTe的介电常数巨大, 且具有晶格匹配的衬底, 这些优势使其有潜力突破纳米线样品质量提升的瓶颈, 成为马约拉纳零能模的研究和拓扑量子计算实现的理想平台. 本文将简单介绍最近几年在PbTe纳米线和PbTe-超导杂化纳米线器件的选区分子束外延生长、输运性质研究方面取得的重要进展, 并对这种新的马约拉纳纳米线候选体系的优势、问题及基于其实现拓扑量子计算的前景进行讨论.
    Semiconductor-superconductor hybrid nanowire is one of the major platforms for realizing Majorana zero modes (MZMs) and topological quantum computing (TQC), and the III-V InAs and InSb-based nanowires are the most-studied materials in this approach. Despite years of efforts to improve and optimize materials, too many defects and impurities in the nanowire samples remain the central problem hindering the research progress in this direction. In recent years, a new candidate Majorana nanowire system—IV-VI semiconductor PbTe-superconductor hybrid nanowire—has attracted much attention and witnessed rapid research progress. The unique advantages of PbTe-based nanowires, such as the large dielectric constant and the presence of a lattice-matched substrate, give them great potential in solving the bottleneck problem of sample defects and impurities, making them an ideal platform for studying MZMs and TQC. In this paper, we briefly introduce the recent research progress of selective area growth and transport characterization of in-plane PbTe nanowires and PbTe-superconductor hybrid nanowires. We also discuss the advantages and problems of the new candidate Majorana nanowire system as well as the prospect of realizing TQC based on it.
      通信作者: 张浩, hzquantum@mail.tsinghua.edu.cn ; 何珂, kehe@tsinghua.edu.cn
    • 基金项目: 合肥国家实验室和科技创新2030-“量子通信与量子计算机”重大项目(批准号: 2021ZD0302400)资助的课题.
      Corresponding author: Zhang Hao, hzquantum@mail.tsinghua.edu.cn ; He Ke, kehe@tsinghua.edu.cn
    • Funds: Project supported by the Hefei National Laboratory, China and the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302400).
    [1]

    Kitaev A Y 2003 Annals Phys. 303 2Google Scholar

    [2]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [3]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [4]

    Cao Z, Chen S M, Zhang G, Liu D E 2023 Sci. China Phys. Mech. 66 267003Google Scholar

    [5]

    Vaitiekėnas S, Whiticar A M, Deng M T, et al. 2018 Phys. Rev. Lett. 121 147701Google Scholar

    [6]

    Aghaee M et al. (Microsoft Quantum) 2023 Phys. Rev. B 107 245423Google Scholar

    [7]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [8]

    Krogstrup P, Ziino N L B, Chang W, et al. 2015 Nat. Mater. 14 400Google Scholar

    [9]

    Chang W, Albrecht S M, Jespersen T S, Kuemmeth F, Krogstrup P, Nygard J, Marcus C M 2015 Nat. Nanotechnol. 10 232Google Scholar

    [10]

    Gul O, Zhang H, Bommer J D S, et al. 2018 Nat. Nanotechnol. 13 192Google Scholar

    [11]

    Wang Z Y, Song H D, Pan D, et al. 2022 Phys. Rev. Lett. 129 167702Google Scholar

    [12]

    Ahn S, Pan H N, Woods B, Stanescu T D, Das Sarma S 2021 Phys. Rev. Mater. 5 124602Google Scholar

    [13]

    Woods B D, Das Sarma S, Stanescu T D 2021 Phys. Rev. Appl. 16 054053Google Scholar

    [14]

    Pan H N, Das Sarma S 2020 Phys. Rev. Res. 2 013377Google Scholar

    [15]

    Pan D, Song H D, Zhang S, Liu L, Wen L J, Liao D Y, Zhuo R, Wang Z C, Zhang Z T, Yang S, Ying J H, Miao W T, Shang R N, Zhang H, Zhao J H 2022 Chin. Phys. Lett. 39 058101Google Scholar

    [16]

    Cao Z, Liu D E, He W X, Liu X, He K, Zhang H 2022 Phys. Rev. B 105 085424Google Scholar

    [17]

    Jiang Y Y, Yang S, Li L, et al. 2022 Phys. Rev. Mater. 6 034205Google Scholar

    [18]

    Geng Z H, Zhang Z T, Chen F T, et al. 2022 Phys. Rev. B 105 L241112Google Scholar

    [19]

    Schellingerhout S G, de Jong E J, Gomanko M, et al. 2022 Mater. Quantum Technol. 2 015001Google Scholar

    [20]

    Gomanko M, de Jong E J, Jiang Y F, Schellingerhout S G, Bakkers E P A M, Frolov S M 2022 SciPost Phys. 13 089Google Scholar

    [21]

    Jung J, Schellingerhout S G, Ritter M F, ten Kate S C, van der Molen O A H, de Loijer S, Verheijen M A, Riel H, Nichele F, Bakkers E P A M 2022 Adv. Funct. Mater. 32 2208974Google Scholar

    [22]

    Ten Kate S C, Ritter M F, Fuhrer A, Jung J, Schellingerhout S G, Bakkers E P A M, Riel H, Nichele F 2022 Nano Lett. 22 7049Google Scholar

    [23]

    Song W Y, Wang Y H, Miao W T, Yu Z H, Gao Y C, Li R D, Yang S, Chen F T, Geng Z H, Zhang Z T, Zhang S, Zang Y Y, Cao Z, Liu D E, Shang R N, Feng X, Li L, Xue Q K, He K, Zhang H 2023 Phys. Rev. B 108 045426Google Scholar

    [24]

    Zhang Z T, Song W Y, Gao Y C, Wang Y H, Yu Z H, Yang S, Jiang Y Y, Miao W T, Li R D, Chen F T, Geng Z H, Zhang Q H, Meng F Q, Lin T, Gu L, Zhu K J, Zang Y Y, Li L, Shang R N, Feng X, Xue Q K, He K, Zhang H 2023 Phys. Rev. Mater. 7 086201Google Scholar

    [25]

    Wang Y H, Chen F T, Song W Y, Geng Z H, Yu Z H, Yang L N, Gao Y C, Li R D, Yang S, Miao W T, Xu W, Wang Z Y, Xia Z Z, Song H D, Feng X, Zang Y Y, Li L, Shang R N, Xue Q K, He K, Zhang H 2023 Nano Lett. published online (DOI: 10.1021/acs.nanolett.3c03604

    [26]

    Gao Y C, Song W Y, Yang S, Yu Z H, Li R D, Miao W T, Wang Y H, Chen F T, Geng Z H, Yang L N, Xia Z Z, Feng X, Zang Y Y, Li L, Shang R N, Xue Q K, He K, Zhang H 2023 arXiv 2309.01355

    [27]

    Springholz G 2018 Chapter 11-Molecular Beam Epitaxy of IV–VI Semiconductors: Fundamentals, Low-dimensional Structures, and Device Applications, Molecular Beam Epitaxy (Second Edition) (Elsevier) pp211–276

    [28]

    Grabecki G, Wróbel J, Zagrajek P, Fronc K, Aleszkiewicz M, Dietl T, Papis E, Kamińska E, Piotrowska A, Springholz G, Bauer G 2006 Physica E 35 332Google Scholar

    [29]

    Beznasyuk D V, Martí-Sánchez S, Kang J H, Tanta R, Rajpalke M, Stankevic T, Christensen A W, Spadaro M C, Bergamaschini R, Maka N N, Petersen C E N, Carrad D J, Jespersen T S, Arbiol J, Krogstrup P 2022 Phys. Rev. Mater. 6 034602Google Scholar

    [30]

    Aseev P, Wang G Z, Binci L, Singh A, Marti-Sanchez S, Botifoll M, Stek L J, Bordin A, Watson J D, Boekhout F, Abel D, Gamble J, Van Hoogdalem K, Arbiol J, Kouwenhoven L P, de Lange G, Caroff P 2019 Nano Lett. 19 9102Google Scholar

    [31]

    Kanne T, Marnauza M, Olsteins D, Carrad D J, Sestoft J E, de Bruijckere J, Zeng L J, Johnson E, Olsson E, Grove-Rasmussen K, Nygard J 2021 Nat. Nanotechnol. 16 776Google Scholar

    [32]

    Liu D E 2013 Phys. Rev. Lett. 111 207003Google Scholar

    [33]

    Zhang H, Liu D E, Wimmer M, Kouwenhoven L P 2019 Nat. Commun. 10 5128Google Scholar

    [34]

    Azab A A, Ward A A, Mahmoud G M, El-Hanafy E M, El-Zahed H, Terra F S 2018 J. Semicond. 39 123006Google Scholar

  • 图 1  (a) PbTe和CdTe的晶格结构示意图; (b) 选区外延生长PbTe-Pb杂化纳米线的制备流程; (c)选区外延生长的不同结构的平面PbTe纳米线; (d) 结合选区外延生长和投影墙生长制备出的PbTe-Pb杂化平面异质结构; (e) PbTe-Pb, PbTe-CdTe, Pb-CdTe覆盖层界面处原子分辨的TEM图像. 除(d)外所有图均来自文献[17]

    Fig. 1.  (a) Crystal structures of PbTe and CdTe; (b) fabrication procedure of PbTe-Pb hybrid nanowires by selective area growth technique; (c) in-plane epitaxial PbTe nanowires of different structures prepared by selective area growth; (d) in-plane PbTe-Pb heterostructures prepared by combining selective area growth and shadow wall growth; (e) atomically resolved TEM images near the interfaces of PbTe-Pb, PbTe-CdTe and Pb-CdTe capping layer. All figures but (d) are cited from Ref. [17].

    图 2  PbTe纳米线的输运特征 (a) 场效应迁移率[17]; (b) 反弱局域效应[17]; (c), (d) AB效应[21]; (e)—(g) QPC器件中的弹道输运[25]; (h)—(k) 量子点中的库仑阻塞效应[22]

    Fig. 2.  Transport properties of PbTe nanowires: (a) Field effect mobility[17]; (b) weak antilocalization effect[17]; (c), (d) AB effect[21]; (e)–(g) ballistic transport in QPC device[25]; (h)–(k) Coulomb blockade effect in quantum dot[22].

    图 3  PbTe-Pb杂化纳米线中的超导近邻效应 (a), (b)约瑟夫森结中的超流[24]; (c), (d)隧道结中的超导硬能隙[26]

    Fig. 3.  Superconducting proximity effect in PbTe-Pb hybrid nanowires: (a), (b) Supercurrent in a Josephson junction[24]; (c), (d) hard gap in a tunneling junction[26].

    Baidu
  • [1]

    Kitaev A Y 2003 Annals Phys. 303 2Google Scholar

    [2]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [3]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [4]

    Cao Z, Chen S M, Zhang G, Liu D E 2023 Sci. China Phys. Mech. 66 267003Google Scholar

    [5]

    Vaitiekėnas S, Whiticar A M, Deng M T, et al. 2018 Phys. Rev. Lett. 121 147701Google Scholar

    [6]

    Aghaee M et al. (Microsoft Quantum) 2023 Phys. Rev. B 107 245423Google Scholar

    [7]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [8]

    Krogstrup P, Ziino N L B, Chang W, et al. 2015 Nat. Mater. 14 400Google Scholar

    [9]

    Chang W, Albrecht S M, Jespersen T S, Kuemmeth F, Krogstrup P, Nygard J, Marcus C M 2015 Nat. Nanotechnol. 10 232Google Scholar

    [10]

    Gul O, Zhang H, Bommer J D S, et al. 2018 Nat. Nanotechnol. 13 192Google Scholar

    [11]

    Wang Z Y, Song H D, Pan D, et al. 2022 Phys. Rev. Lett. 129 167702Google Scholar

    [12]

    Ahn S, Pan H N, Woods B, Stanescu T D, Das Sarma S 2021 Phys. Rev. Mater. 5 124602Google Scholar

    [13]

    Woods B D, Das Sarma S, Stanescu T D 2021 Phys. Rev. Appl. 16 054053Google Scholar

    [14]

    Pan H N, Das Sarma S 2020 Phys. Rev. Res. 2 013377Google Scholar

    [15]

    Pan D, Song H D, Zhang S, Liu L, Wen L J, Liao D Y, Zhuo R, Wang Z C, Zhang Z T, Yang S, Ying J H, Miao W T, Shang R N, Zhang H, Zhao J H 2022 Chin. Phys. Lett. 39 058101Google Scholar

    [16]

    Cao Z, Liu D E, He W X, Liu X, He K, Zhang H 2022 Phys. Rev. B 105 085424Google Scholar

    [17]

    Jiang Y Y, Yang S, Li L, et al. 2022 Phys. Rev. Mater. 6 034205Google Scholar

    [18]

    Geng Z H, Zhang Z T, Chen F T, et al. 2022 Phys. Rev. B 105 L241112Google Scholar

    [19]

    Schellingerhout S G, de Jong E J, Gomanko M, et al. 2022 Mater. Quantum Technol. 2 015001Google Scholar

    [20]

    Gomanko M, de Jong E J, Jiang Y F, Schellingerhout S G, Bakkers E P A M, Frolov S M 2022 SciPost Phys. 13 089Google Scholar

    [21]

    Jung J, Schellingerhout S G, Ritter M F, ten Kate S C, van der Molen O A H, de Loijer S, Verheijen M A, Riel H, Nichele F, Bakkers E P A M 2022 Adv. Funct. Mater. 32 2208974Google Scholar

    [22]

    Ten Kate S C, Ritter M F, Fuhrer A, Jung J, Schellingerhout S G, Bakkers E P A M, Riel H, Nichele F 2022 Nano Lett. 22 7049Google Scholar

    [23]

    Song W Y, Wang Y H, Miao W T, Yu Z H, Gao Y C, Li R D, Yang S, Chen F T, Geng Z H, Zhang Z T, Zhang S, Zang Y Y, Cao Z, Liu D E, Shang R N, Feng X, Li L, Xue Q K, He K, Zhang H 2023 Phys. Rev. B 108 045426Google Scholar

    [24]

    Zhang Z T, Song W Y, Gao Y C, Wang Y H, Yu Z H, Yang S, Jiang Y Y, Miao W T, Li R D, Chen F T, Geng Z H, Zhang Q H, Meng F Q, Lin T, Gu L, Zhu K J, Zang Y Y, Li L, Shang R N, Feng X, Xue Q K, He K, Zhang H 2023 Phys. Rev. Mater. 7 086201Google Scholar

    [25]

    Wang Y H, Chen F T, Song W Y, Geng Z H, Yu Z H, Yang L N, Gao Y C, Li R D, Yang S, Miao W T, Xu W, Wang Z Y, Xia Z Z, Song H D, Feng X, Zang Y Y, Li L, Shang R N, Xue Q K, He K, Zhang H 2023 Nano Lett. published online (DOI: 10.1021/acs.nanolett.3c03604

    [26]

    Gao Y C, Song W Y, Yang S, Yu Z H, Li R D, Miao W T, Wang Y H, Chen F T, Geng Z H, Yang L N, Xia Z Z, Feng X, Zang Y Y, Li L, Shang R N, Xue Q K, He K, Zhang H 2023 arXiv 2309.01355

    [27]

    Springholz G 2018 Chapter 11-Molecular Beam Epitaxy of IV–VI Semiconductors: Fundamentals, Low-dimensional Structures, and Device Applications, Molecular Beam Epitaxy (Second Edition) (Elsevier) pp211–276

    [28]

    Grabecki G, Wróbel J, Zagrajek P, Fronc K, Aleszkiewicz M, Dietl T, Papis E, Kamińska E, Piotrowska A, Springholz G, Bauer G 2006 Physica E 35 332Google Scholar

    [29]

    Beznasyuk D V, Martí-Sánchez S, Kang J H, Tanta R, Rajpalke M, Stankevic T, Christensen A W, Spadaro M C, Bergamaschini R, Maka N N, Petersen C E N, Carrad D J, Jespersen T S, Arbiol J, Krogstrup P 2022 Phys. Rev. Mater. 6 034602Google Scholar

    [30]

    Aseev P, Wang G Z, Binci L, Singh A, Marti-Sanchez S, Botifoll M, Stek L J, Bordin A, Watson J D, Boekhout F, Abel D, Gamble J, Van Hoogdalem K, Arbiol J, Kouwenhoven L P, de Lange G, Caroff P 2019 Nano Lett. 19 9102Google Scholar

    [31]

    Kanne T, Marnauza M, Olsteins D, Carrad D J, Sestoft J E, de Bruijckere J, Zeng L J, Johnson E, Olsson E, Grove-Rasmussen K, Nygard J 2021 Nat. Nanotechnol. 16 776Google Scholar

    [32]

    Liu D E 2013 Phys. Rev. Lett. 111 207003Google Scholar

    [33]

    Zhang H, Liu D E, Wimmer M, Kouwenhoven L P 2019 Nat. Commun. 10 5128Google Scholar

    [34]

    Azab A A, Ward A A, Mahmoud G M, El-Hanafy E M, El-Zahed H, Terra F S 2018 J. Semicond. 39 123006Google Scholar

  • [1] 曾莹, 佘彦超, 张蔚曦, 杨红. 纳米光纤-半导体量子点分子耦合系统中光孤子的存储与读取.  , 2024, 73(16): 164202. doi: 10.7498/aps.73.20240184
    [2] 代雪峰, 贡同. 铁磁性电极条件下T形双量子点结构中马约拉纳束缚态的解耦现象.  , 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [3] 李更, 丁洪, 汪自强, 高鸿钧. 铁基超导体中的马约拉纳零能模及其阵列构筑.  , 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [4] 徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力. 马约拉纳零能模的输运探测.  , 2023, 72(17): 177401. doi: 10.7498/aps.72.20230951
    [5] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展.  , 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [6] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究.  , 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [7] 文炼均, 潘东, 赵建华. 从高质量半导体/超导体纳米线到马约拉纳零能模.  , 2021, 70(5): 058101. doi: 10.7498/aps.70.20201750
    [8] 王靖. 手征马约拉纳费米子.  , 2020, 69(11): 117302. doi: 10.7498/aps.69.20200534
    [9] 于春霖, 张浩. Majorana准粒子与超导体-半导体异质纳米线.  , 2020, 69(7): 077303. doi: 10.7498/aps.69.20200177
    [10] 孔令元, 丁洪. 铁基超导涡旋演生马约拉纳零能模.  , 2020, 69(11): 110301. doi: 10.7498/aps.69.20200717
    [11] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用.  , 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [12] 李耀义, 贾金锋. 在人工拓扑超导体磁通涡旋中寻找Majorana零能模.  , 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [13] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模.  , 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [14] 王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 利用N型半导体纳米材料抑制单量子点的荧光闪烁特性.  , 2015, 64(24): 247803. doi: 10.7498/aps.64.247803
    [15] 雷小丽, 王大威, 梁士雄, 吴朝新. 半导体量子阱中激子波函数及其 Fourier系数的计算和应用.  , 2012, 61(5): 057803. doi: 10.7498/aps.61.057803
    [16] 孙伟峰, 郑晓霞. (InAs)1/(GaSb)1超晶格纳米线第一原理研究.  , 2012, 61(11): 117103. doi: 10.7498/aps.61.117103
    [17] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器.  , 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [18] 沈建其, 庄 飞. 螺旋光纤系统中非绝热条件几何相移.  , 2005, 54(3): 1048-1052. doi: 10.7498/aps.54.1048
    [19] 李晋闽, 郭里辉, 侯洵. 场助InP/InGaAsP半导体光电阴极量子效率的理论计算.  , 1992, 41(10): 1672-1678. doi: 10.7498/aps.41.1672
    [20] 郝柏林. 能隙为零的半导体的平衡性质.  , 1961, 17(11): 505-511. doi: 10.7498/aps.17.505
计量
  • 文章访问数:  3224
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-06
  • 修回日期:  2023-10-29
  • 上网日期:  2023-11-16
  • 刊出日期:  2023-12-05

/

返回文章
返回
Baidu
map