搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由层磁性交换偏置效应调控隧穿磁电阻磁传感单元性能

丰家峰 陈星 魏红祥 陈鹏 兰贵彬 刘要稳 郭经红 黄辉 韩秀峰

引用本文:
Citation:

自由层磁性交换偏置效应调控隧穿磁电阻磁传感单元性能

丰家峰, 陈星, 魏红祥, 陈鹏, 兰贵彬, 刘要稳, 郭经红, 黄辉, 韩秀峰

Key performance of tunneling magnetoresistance sensing unit modulated by exchange bias of free layer

Feng Jia-Feng, Chen Xing, Wei Hong-Xiang, Chen Peng, Lan Gui-Bin, Liu Yao-Wen, Guo Jing-Hong, Huang Hui, Han Xiu-Feng
PDF
HTML
导出引用
  • 优化样品结构参数、磁场退火热处理、串并联桥式设计、施加电流热效应以及额外偏置磁场等是调控隧穿磁电阻(tunnel magnetoresistance, TMR)磁传感性能的常用方法. 借助这些方法可以提高TMR磁传感的灵敏度、抗噪声指数、线性度和线性磁场范围等关键性能参数. 其中, 通过改变TMR磁传感单元的钉扎层、自由层以及势垒层材料和厚度等样品结构参数能够改变交换偏置场, 进而提升TMR磁传感性能参数. 本文基于微磁学仿真和实验测量发现, 通过改变自由层CoFeB/Ru/NiFe/IrMn中的交换耦合作用, 可以调制TMR自由层的交换偏置场大小和提升TMR磁传感单元的性能. 当逐步增强IrMn钉扎效果时, TMR磁传感单元的线性磁场范围随之增大, 但是磁场灵敏度降低; 在±0.5倍自由层(主要是CoFeB层)磁矩变化范围内所有TMR磁传感单元的线性度最佳.
    Optimizing sample structural parameters, magnetic field annealing, series-parallel bridge design, current thermal effect, and additional bias magnetic field are common methods used for controlling the tunneling magnetoresistance (TMR) magnetic sensing performance. By employing these methods, key performance parameters of TMR sensors such as sensitivity, noise resistance index, linearity, and linear magnetic field range can be optimized and improved. Changing the sample structural parameters, such as the pinning layer, free layer, and barrier layer materials and thickness of the TMR magnetic sensing unit, can change the exchange bias field and thus enhance the TMR magnetic sensing performance parameters. In this study, through micromagnetic simulation and experimental measurements, it is discovered that by modifying the exchange coupling in the free layer CoFeB/Ru/NiFe/IrMn, the exchange bias field magnitude of the TMR free layer can be modulated, leading to improved performance of the TMR magnetic sensing unit. As the IrMn pinning effect is gradually enhanced, the linear magnetic field range of the TMR magnetic sensing unit increases, but the magnetic field sensitivity decreases. It is further found that the linearity of the TMR magnetic sensor is optimal within a range of ±0.5 times the magnetic moment variation of the free layer (primarily the CoFeB layer). Through our work, the effect of exchange bias field (caused by the pinning IrMn of the free layer) on the magnetic sensing performance is verified in the TMR magnetic sensing unit. Our work demonstrates more possibilities for designing and optimizing TMR magnetic sensors, enriching the dimensions of magnetic sensing performance modulation.
      通信作者: 丰家峰, jiafengfeng@iphy.ac.cn
    • 基金项目: 国家重点研发计划 (批准号: 2021YFB3201800, 2021YFB3201801)资助的课题.
      Corresponding author: Feng Jia-Feng, jiafengfeng@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFB3201800, 2021YFB3201801).
    [1]

    周子童, 闫韶华, 赵巍胜, 冷群文 2022 71 058504Google Scholar

    Zhou Z T, Yan S H, Zhao W S, Leng Q W 2022 Acta Phys. Sin. 71 058504Google Scholar

    [2]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar

    [3]

    Stamps R L 2000 J. Phys. D 33 R247Google Scholar

    [4]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [5]

    Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S, Baró M D 2005 Phys. Rep. 422 65Google Scholar

    [6]

    Binek C, Polisetty S, He X, Berger A 2006 Phys. Rev. Lett. 96 067201Google Scholar

    [7]

    Tang M H, Zhang Z Z, Tian S Y, Wang J, Ma B, Jin Q Y 2015 Sci. Rep. 5 10863Google Scholar

    [8]

    Zhou S M, Liu K, Chien C L 1998 Phys. Rev. B 58 R14717Google Scholar

    [9]

    Zhou S M, Liu K, Chien C L 2000 J. Appl. Phys. 87 6659Google Scholar

    [10]

    Berkowitz A E, Takano K 1999 J. Magn. Magn. Mater. 200 552Google Scholar

    [11]

    Morales R, Basaran A C, Villegas J E, Navas D, Soriano N, Mora B, Redondo C, Batlle X, Schuller I K 2015 Phys. Rev. Lett. 114 097202Google Scholar

    [12]

    Malozemoff A M 1987 Phys. Rev. B 35 3679

    [13]

    Feng J F, Liu H F, Wei H X, Zhang X G, Ren Y, Li X, Wang Y, Wang J P, Han X F 2017 Phys. Rev. Appl. 7 054005Google Scholar

    [14]

    韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥 2022 71 238502Google Scholar

    Han X F, Zhang Y, Feng J F, Chen C, Deng H, Huang H, Guo J H, Liang Y, Si W R, Jiang A F, Wei H X 2022 Acta Phys. Sin. 71 238502Google Scholar

    [15]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828

    [16]

    丰家峰, 魏红祥, 于国强, 黄辉, 郭经红, 韩秀峰 2023 72 018501Google Scholar

    Feng J F, Wei H X, Yu G Q, Huang H, Guo J H, Han X F 2023 Acta Phys. Sin. 72 018501Google Scholar

    [17]

    Chen J Y, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 100 142407Google Scholar

    [18]

    Han X F, Zhang Y, Wang Y Z, Huang L, Ma Q L, Liu H F, Wan C H, Feng J F, Yin L, Yu G Q, Yu T, Yan Y 2021 Chin. Phys. Lett. 38 128501Google Scholar

    [19]

    Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903Google Scholar

    [20]

    Chaves R C, Cardoso S, Ferreira R, Freitas P P 2011 J. Appl. Phys. 109 07E506Google Scholar

    [21]

    Freitas P P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys. Cond. Mat. 19 165221Google Scholar

    [22]

    Oogane M, Fujiwara K, Kanno A, Nakano T, Wagatsuma H, Arimoto T, Mizukami S, Kumagai S, Matsuzaki H, Nakasato N, Ando Y 2021 Appl. Phys. Express 14 123002Google Scholar

    [23]

    Han X F, Oogane M, Kubota H, Ando Y, Miyazaki T 2000 Appl. Phys. Lett. 77 283Google Scholar

    [24]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar

    [25]

    Han X F, Wei H X, Peng Z L, Yang H D, Feng J F, Du G X, Sun Z B, Jiang L X, Ma M, Wang Y, Wen Z C, Liu D P, Zhan W S 2007 J. Mater. Sci. Tech. 23 304

    [26]

    Feng J F, Feng G, Coey J M D, Han X F, Zhan W S 2007 Appl. Phys. Lett. 91 102505Google Scholar

  • 图 1  磁传感关键性能参数以及调控磁传感关键性能参数的主要方法(黄色虚线代表需进一步的实验结果来佐证)

    Fig. 1.  Key performance parameters of magnetoresistive sensing and main methods for modulating them (Yellow dashed lines indicate that further experimental results are needed).

    图 2  (a) TMR磁传感单元实验结构; (b) TMR磁传感单元的线性输出特性曲线

    Fig. 2.  (a) Experimental structure of TMR magnetoresistive sensing unit; (b) linear output curve of TMR magnetoresistive sensing unit.

    图 3  (a) TMR磁传感单元主要结构示意图; (b) 微磁学模型建立细节

    Fig. 3.  (a) Schematic diagram of TMR magnetoresistive sensing unit; (b) establishment details of micromagnetic simulation model.

    图 4  不同交换偏置场作用下的磁矩对外磁场的变化曲线(红色实线代表±0.5倍自由层磁矩范围内线性输出曲线) (a) 10 Oe; (b) 20 Oe; (c) 50 Oe; (d) 100 Oe

    Fig. 4.  Linear output simulation curves under different exchange-biased fields of the free layer (Solid red lines represents linear output curves within the range of ±0.5 times the magnetic moment of the free layer): (a) 10 Oe; (b) 20 Oe; (c) 50 Oe; (d) 100 Oe.

    图 5  微磁学仿真得到的TMR磁传感单元线性磁场范围(a)和(近似)灵敏度(b)随着自由层交换偏置作用的变化关系

    Fig. 5.  Relationship between the linear magnetic field range (a) and sensitivity (b) of TMR magnetoresistive sensing unit obtained by the micromagnetic simulation method and the exchange-biased field of the free layer.

    表 1  智能电网和新能源汽车领域磁传感器件的潜在应用场景

    Table 1.  Potential application scenarios of magnetic sensing devices in the fields of smart grids and new energy vehicles.

    智能电网领域新能源汽车领域
    负荷测量磁传感动力磁传感
    设备电气状态监测磁传感车身、座椅磁传感
    设备机械状态监测磁传感辅助驾驶磁传感
    下载: 导出CSV
    Baidu
  • [1]

    周子童, 闫韶华, 赵巍胜, 冷群文 2022 71 058504Google Scholar

    Zhou Z T, Yan S H, Zhao W S, Leng Q W 2022 Acta Phys. Sin. 71 058504Google Scholar

    [2]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar

    [3]

    Stamps R L 2000 J. Phys. D 33 R247Google Scholar

    [4]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [5]

    Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S, Baró M D 2005 Phys. Rep. 422 65Google Scholar

    [6]

    Binek C, Polisetty S, He X, Berger A 2006 Phys. Rev. Lett. 96 067201Google Scholar

    [7]

    Tang M H, Zhang Z Z, Tian S Y, Wang J, Ma B, Jin Q Y 2015 Sci. Rep. 5 10863Google Scholar

    [8]

    Zhou S M, Liu K, Chien C L 1998 Phys. Rev. B 58 R14717Google Scholar

    [9]

    Zhou S M, Liu K, Chien C L 2000 J. Appl. Phys. 87 6659Google Scholar

    [10]

    Berkowitz A E, Takano K 1999 J. Magn. Magn. Mater. 200 552Google Scholar

    [11]

    Morales R, Basaran A C, Villegas J E, Navas D, Soriano N, Mora B, Redondo C, Batlle X, Schuller I K 2015 Phys. Rev. Lett. 114 097202Google Scholar

    [12]

    Malozemoff A M 1987 Phys. Rev. B 35 3679

    [13]

    Feng J F, Liu H F, Wei H X, Zhang X G, Ren Y, Li X, Wang Y, Wang J P, Han X F 2017 Phys. Rev. Appl. 7 054005Google Scholar

    [14]

    韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥 2022 71 238502Google Scholar

    Han X F, Zhang Y, Feng J F, Chen C, Deng H, Huang H, Guo J H, Liang Y, Si W R, Jiang A F, Wei H X 2022 Acta Phys. Sin. 71 238502Google Scholar

    [15]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828

    [16]

    丰家峰, 魏红祥, 于国强, 黄辉, 郭经红, 韩秀峰 2023 72 018501Google Scholar

    Feng J F, Wei H X, Yu G Q, Huang H, Guo J H, Han X F 2023 Acta Phys. Sin. 72 018501Google Scholar

    [17]

    Chen J Y, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 100 142407Google Scholar

    [18]

    Han X F, Zhang Y, Wang Y Z, Huang L, Ma Q L, Liu H F, Wan C H, Feng J F, Yin L, Yu G Q, Yu T, Yan Y 2021 Chin. Phys. Lett. 38 128501Google Scholar

    [19]

    Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903Google Scholar

    [20]

    Chaves R C, Cardoso S, Ferreira R, Freitas P P 2011 J. Appl. Phys. 109 07E506Google Scholar

    [21]

    Freitas P P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys. Cond. Mat. 19 165221Google Scholar

    [22]

    Oogane M, Fujiwara K, Kanno A, Nakano T, Wagatsuma H, Arimoto T, Mizukami S, Kumagai S, Matsuzaki H, Nakasato N, Ando Y 2021 Appl. Phys. Express 14 123002Google Scholar

    [23]

    Han X F, Oogane M, Kubota H, Ando Y, Miyazaki T 2000 Appl. Phys. Lett. 77 283Google Scholar

    [24]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar

    [25]

    Han X F, Wei H X, Peng Z L, Yang H D, Feng J F, Du G X, Sun Z B, Jiang L X, Ma M, Wang Y, Wen Z C, Liu D P, Zhan W S 2007 J. Mater. Sci. Tech. 23 304

    [26]

    Feng J F, Feng G, Coey J M D, Han X F, Zhan W S 2007 Appl. Phys. Lett. 91 102505Google Scholar

  • [1] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器.  , 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [2] 丰家峰, 魏红祥, 于国强, 黄辉, 郭经红, 韩秀峰. 电流焦耳热调控反转型垂直(Co/Pt)n/Co/IrMn纳米多层膜结构的交换偏置效应研究.  , 2023, 72(1): 018501. doi: 10.7498/aps.72.20221584
    [3] 张亚君, 蔡佳林, 乔亚, 曾中明, 袁喆, 夏钶. 基于磁性隧道结的群体编码实现无监督聚类.  , 2022, 71(14): 148506. doi: 10.7498/aps.71.20220252
    [4] 韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥. 基于MgO磁性隧道结的五种隧穿磁电阻线性传感单元性能比较.  , 2022, 71(23): 238502. doi: 10.7498/aps.71.20221278
    [5] 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究.  , 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
    [6] Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应.  , 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [7] 黄政, 龙超云, 周勋, 徐明. 双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究.  , 2016, 65(15): 157301. doi: 10.7498/aps.65.157301
    [8] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间.  , 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [9] 吕庆荣, 方庆清, 刘艳美. 纳米结构CoxFe3-xO4多孔微球的磁性及交换偏置效应研究.  , 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [10] 刘德, 张红梅, 贾秀敏. 对称抛物势阱磁性隧道结中的自旋输运及磁电阻效应.  , 2011, 60(1): 017506. doi: 10.7498/aps.60.017506
    [11] 彭子龙, 韩秀峰, 赵素芬, 魏红祥, 杜关祥, 詹文山. 磁随机存储器中垂直电流驱动的磁性隧道结自由层的磁化翻转.  , 2006, 55(2): 860-864. doi: 10.7498/aps.55.860
    [12] 唐为华, 李培刚, L. H. Li, J. Gao. La2/3Ca1/3MnO3/Eu2CuO4/La2/3Ca1/3MnO3磁性隧道结的制备与表征.  , 2005, 54(1): 291-294. doi: 10.7498/aps.54.291
    [13] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究.  , 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [14] 冯玉清, 侯利娜, 朱 涛, 姚淑德, 詹文山. 具有纳米氧化层的磁性隧道结的热稳定性研究.  , 2005, 54(9): 4340-4344. doi: 10.7498/aps.54.4340
    [15] 张 喆, 朱 涛, 冯玉清, 张 泽. Co基磁性隧道结势垒结构的电子全息研究.  , 2005, 54(12): 5861-5866. doi: 10.7498/aps.54.5861
    [16] 李飞飞, 张谢群, 杜关祥, 王天兴, 曾中明, 魏红祥, 韩秀峰. 高磁电阻磁性隧道结的几种微制备方法研究.  , 2005, 54(8): 3831-3838. doi: 10.7498/aps.54.3831
    [17] 由 臣, 赵燕平, 金恩姬, 李飞飞, 王天兴, 曾中明, 彭子龙. 利用金属掩模法制备钉扎型磁性隧道结.  , 2004, 53(8): 2741-2745. doi: 10.7498/aps.53.2741
    [18] 王天兴, 魏红祥, 李飞飞, 张爱国, 曾中明, 詹文山, 韩秀峰. 4英寸热氧化硅衬底上磁性隧道结的微制备.  , 2004, 53(11): 3895-3901. doi: 10.7498/aps.53.3895
    [19] 谢征微, 李伯臧. 处理具有任意形状势垒的磁性隧道结中电子输运的一个简单方法.  , 2002, 51(2): 399-405. doi: 10.7498/aps.51.399
    [20] 刘存业, 徐庆宇, 倪 刚, 桑 海, 都有为. Fe/Al2O3/Fe隧道结特性分析.  , 2000, 49(9): 1897-1900. doi: 10.7498/aps.49.1897
计量
  • 文章访问数:  3000
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-17
  • 修回日期:  2023-08-07
  • 上网日期:  2023-08-08
  • 刊出日期:  2023-10-05

/

返回文章
返回
Baidu
map