-
优化样品结构参数、磁场退火热处理、串并联桥式设计、施加电流热效应以及额外偏置磁场等是调控隧穿磁电阻(tunnel magnetoresistance, TMR)磁传感性能的常用方法. 借助这些方法可以提高TMR磁传感的灵敏度、抗噪声指数、线性度和线性磁场范围等关键性能参数. 其中, 通过改变TMR磁传感单元的钉扎层、自由层以及势垒层材料和厚度等样品结构参数能够改变交换偏置场, 进而提升TMR磁传感性能参数. 本文基于微磁学仿真和实验测量发现, 通过改变自由层CoFeB/Ru/NiFe/IrMn中的交换耦合作用, 可以调制TMR自由层的交换偏置场大小和提升TMR磁传感单元的性能. 当逐步增强IrMn钉扎效果时, TMR磁传感单元的线性磁场范围随之增大, 但是磁场灵敏度降低; 在±0.5倍自由层(主要是CoFeB层)磁矩变化范围内所有TMR磁传感单元的线性度最佳.
-
关键词:
- 交换偏置效应 /
- 磁性隧道结 /
- 隧穿磁电阻线性传感单元 /
- 磁传感器件
Optimizing sample structural parameters, magnetic field annealing, series-parallel bridge design, current thermal effect, and additional bias magnetic field are common methods used for controlling the tunneling magnetoresistance (TMR) magnetic sensing performance. By employing these methods, key performance parameters of TMR sensors such as sensitivity, noise resistance index, linearity, and linear magnetic field range can be optimized and improved. Changing the sample structural parameters, such as the pinning layer, free layer, and barrier layer materials and thickness of the TMR magnetic sensing unit, can change the exchange bias field and thus enhance the TMR magnetic sensing performance parameters. In this study, through micromagnetic simulation and experimental measurements, it is discovered that by modifying the exchange coupling in the free layer CoFeB/Ru/NiFe/IrMn, the exchange bias field magnitude of the TMR free layer can be modulated, leading to improved performance of the TMR magnetic sensing unit. As the IrMn pinning effect is gradually enhanced, the linear magnetic field range of the TMR magnetic sensing unit increases, but the magnetic field sensitivity decreases. It is further found that the linearity of the TMR magnetic sensor is optimal within a range of ±0.5 times the magnetic moment variation of the free layer (primarily the CoFeB layer). Through our work, the effect of exchange bias field (caused by the pinning IrMn of the free layer) on the magnetic sensing performance is verified in the TMR magnetic sensing unit. Our work demonstrates more possibilities for designing and optimizing TMR magnetic sensors, enriching the dimensions of magnetic sensing performance modulation.-
Keywords:
- exchange bias effect /
- magnetic tunnel junctions /
- tunneling magnetoresistance linear sensing unit /
- magnetoresistive sensors
[1] 周子童, 闫韶华, 赵巍胜, 冷群文 2022 71 058504Google Scholar
Zhou Z T, Yan S H, Zhao W S, Leng Q W 2022 Acta Phys. Sin. 71 058504Google Scholar
[2] Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar
[3] Stamps R L 2000 J. Phys. D 33 R247Google Scholar
[4] Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar
[5] Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S, Baró M D 2005 Phys. Rep. 422 65Google Scholar
[6] Binek C, Polisetty S, He X, Berger A 2006 Phys. Rev. Lett. 96 067201Google Scholar
[7] Tang M H, Zhang Z Z, Tian S Y, Wang J, Ma B, Jin Q Y 2015 Sci. Rep. 5 10863Google Scholar
[8] Zhou S M, Liu K, Chien C L 1998 Phys. Rev. B 58 R14717Google Scholar
[9] Zhou S M, Liu K, Chien C L 2000 J. Appl. Phys. 87 6659Google Scholar
[10] Berkowitz A E, Takano K 1999 J. Magn. Magn. Mater. 200 552Google Scholar
[11] Morales R, Basaran A C, Villegas J E, Navas D, Soriano N, Mora B, Redondo C, Batlle X, Schuller I K 2015 Phys. Rev. Lett. 114 097202Google Scholar
[12] Malozemoff A M 1987 Phys. Rev. B 35 3679
[13] Feng J F, Liu H F, Wei H X, Zhang X G, Ren Y, Li X, Wang Y, Wang J P, Han X F 2017 Phys. Rev. Appl. 7 054005Google Scholar
[14] 韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥 2022 71 238502Google Scholar
Han X F, Zhang Y, Feng J F, Chen C, Deng H, Huang H, Guo J H, Liang Y, Si W R, Jiang A F, Wei H X 2022 Acta Phys. Sin. 71 238502Google Scholar
[15] Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828
[16] 丰家峰, 魏红祥, 于国强, 黄辉, 郭经红, 韩秀峰 2023 72 018501Google Scholar
Feng J F, Wei H X, Yu G Q, Huang H, Guo J H, Han X F 2023 Acta Phys. Sin. 72 018501Google Scholar
[17] Chen J Y, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 100 142407Google Scholar
[18] Han X F, Zhang Y, Wang Y Z, Huang L, Ma Q L, Liu H F, Wan C H, Feng J F, Yin L, Yu G Q, Yu T, Yan Y 2021 Chin. Phys. Lett. 38 128501Google Scholar
[19] Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903Google Scholar
[20] Chaves R C, Cardoso S, Ferreira R, Freitas P P 2011 J. Appl. Phys. 109 07E506Google Scholar
[21] Freitas P P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys. Cond. Mat. 19 165221Google Scholar
[22] Oogane M, Fujiwara K, Kanno A, Nakano T, Wagatsuma H, Arimoto T, Mizukami S, Kumagai S, Matsuzaki H, Nakasato N, Ando Y 2021 Appl. Phys. Express 14 123002Google Scholar
[23] Han X F, Oogane M, Kubota H, Ando Y, Miyazaki T 2000 Appl. Phys. Lett. 77 283Google Scholar
[24] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar
[25] Han X F, Wei H X, Peng Z L, Yang H D, Feng J F, Du G X, Sun Z B, Jiang L X, Ma M, Wang Y, Wen Z C, Liu D P, Zhan W S 2007 J. Mater. Sci. Tech. 23 304
[26] Feng J F, Feng G, Coey J M D, Han X F, Zhan W S 2007 Appl. Phys. Lett. 91 102505Google Scholar
-
图 4 不同交换偏置场作用下的磁矩对外磁场的变化曲线(红色实线代表±0.5倍自由层磁矩范围内线性输出曲线) (a) 10 Oe; (b) 20 Oe; (c) 50 Oe; (d) 100 Oe
Fig. 4. Linear output simulation curves under different exchange-biased fields of the free layer (Solid red lines represents linear output curves within the range of ±0.5 times the magnetic moment of the free layer): (a) 10 Oe; (b) 20 Oe; (c) 50 Oe; (d) 100 Oe.
表 1 智能电网和新能源汽车领域磁传感器件的潜在应用场景
Table 1. Potential application scenarios of magnetic sensing devices in the fields of smart grids and new energy vehicles.
智能电网领域 新能源汽车领域 负荷测量磁传感 动力磁传感 设备电气状态监测磁传感 车身、座椅磁传感 设备机械状态监测磁传感 辅助驾驶磁传感 -
[1] 周子童, 闫韶华, 赵巍胜, 冷群文 2022 71 058504Google Scholar
Zhou Z T, Yan S H, Zhao W S, Leng Q W 2022 Acta Phys. Sin. 71 058504Google Scholar
[2] Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar
[3] Stamps R L 2000 J. Phys. D 33 R247Google Scholar
[4] Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar
[5] Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S, Baró M D 2005 Phys. Rep. 422 65Google Scholar
[6] Binek C, Polisetty S, He X, Berger A 2006 Phys. Rev. Lett. 96 067201Google Scholar
[7] Tang M H, Zhang Z Z, Tian S Y, Wang J, Ma B, Jin Q Y 2015 Sci. Rep. 5 10863Google Scholar
[8] Zhou S M, Liu K, Chien C L 1998 Phys. Rev. B 58 R14717Google Scholar
[9] Zhou S M, Liu K, Chien C L 2000 J. Appl. Phys. 87 6659Google Scholar
[10] Berkowitz A E, Takano K 1999 J. Magn. Magn. Mater. 200 552Google Scholar
[11] Morales R, Basaran A C, Villegas J E, Navas D, Soriano N, Mora B, Redondo C, Batlle X, Schuller I K 2015 Phys. Rev. Lett. 114 097202Google Scholar
[12] Malozemoff A M 1987 Phys. Rev. B 35 3679
[13] Feng J F, Liu H F, Wei H X, Zhang X G, Ren Y, Li X, Wang Y, Wang J P, Han X F 2017 Phys. Rev. Appl. 7 054005Google Scholar
[14] 韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥 2022 71 238502Google Scholar
Han X F, Zhang Y, Feng J F, Chen C, Deng H, Huang H, Guo J H, Liang Y, Si W R, Jiang A F, Wei H X 2022 Acta Phys. Sin. 71 238502Google Scholar
[15] Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828
[16] 丰家峰, 魏红祥, 于国强, 黄辉, 郭经红, 韩秀峰 2023 72 018501Google Scholar
Feng J F, Wei H X, Yu G Q, Huang H, Guo J H, Han X F 2023 Acta Phys. Sin. 72 018501Google Scholar
[17] Chen J Y, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 100 142407Google Scholar
[18] Han X F, Zhang Y, Wang Y Z, Huang L, Ma Q L, Liu H F, Wan C H, Feng J F, Yin L, Yu G Q, Yu T, Yan Y 2021 Chin. Phys. Lett. 38 128501Google Scholar
[19] Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903Google Scholar
[20] Chaves R C, Cardoso S, Ferreira R, Freitas P P 2011 J. Appl. Phys. 109 07E506Google Scholar
[21] Freitas P P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys. Cond. Mat. 19 165221Google Scholar
[22] Oogane M, Fujiwara K, Kanno A, Nakano T, Wagatsuma H, Arimoto T, Mizukami S, Kumagai S, Matsuzaki H, Nakasato N, Ando Y 2021 Appl. Phys. Express 14 123002Google Scholar
[23] Han X F, Oogane M, Kubota H, Ando Y, Miyazaki T 2000 Appl. Phys. Lett. 77 283Google Scholar
[24] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar
[25] Han X F, Wei H X, Peng Z L, Yang H D, Feng J F, Du G X, Sun Z B, Jiang L X, Ma M, Wang Y, Wen Z C, Liu D P, Zhan W S 2007 J. Mater. Sci. Tech. 23 304
[26] Feng J F, Feng G, Coey J M D, Han X F, Zhan W S 2007 Appl. Phys. Lett. 91 102505Google Scholar
计量
- 文章访问数: 3001
- PDF下载量: 126
- 被引次数: 0