搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光场辐照下稀磁半导体/半导体超晶格中自旋电子输运特性研究

李春雷 郑军 王小明 徐燕

引用本文:
Citation:

光场辐照下稀磁半导体/半导体超晶格中自旋电子输运特性研究

李春雷, 郑军, 王小明, 徐燕

Spin-polarized transport properties in diluted-magnetic-semiconductor/semiconductor superlattices under light-field assisted

Li Chun-Lei, Zheng Jun, Wang Xiao-Ming, Xu Yan
PDF
HTML
导出引用
  • 基于单电子有效质量近似理论和传递矩阵方法, 理论研究了稀磁半导体/半导体超晶格结构中电子的自旋极化输运特性. 主要讨论了光场和磁场联合调制对自旋极化输运的影响, 以及不同自旋电子在该超晶格结构中的隧穿时间. 理论和数值计算结果表明, 由于导带电子与掺杂Mn 离子之间的sp-d 电子相互作用引起巨塞曼劈裂, 因此在磁场调制下, 不同自旋电子在该结构中感受到的势函数不同而呈现出自旋过滤效应, 不同自旋电子的共振透射能带的位置和宽度可以通过磁场进行调制. 同时在该结构中考虑光场时, 自旋依赖的透射谱会因为吸收和发射光子而呈现出对光场的强度和频率响应; 最后, 通过不同自旋电子的高斯波包在该结构中随时间的演化给出了不同自旋电子的隧穿时间. 本文研究结果对研究和设计基于稀磁半导体/半导体超晶格结构的高速量子器件具有一定的指导意义.
    Based on the single electron effective mass approximation theory and the transfer-matrix method, the spin polarized transport properties of electrons in a diluted-magnetic-semiconductor/semiconductor superlattice are studied. The influence of a light-field and a magnetic-field on spin polarized transport and the tunneling time in the superlattice structure are discussed in more detail. The results show that, due to the sp-d electron interaction between conduction band electrons and doped Mn ions, giant Zeeman splitting occurs. It is shown that a significant spin-dependent transmission and the position and width of the resonant-transmission-band of spin-dependent electron can be manipulated by adjusting the magnetic- and light-field. Considering the light field irradiation, the resonance band of electron is deformed and broadened with the increase of the light field intensity. For the case of a strong magnetic field, the transmission coefficient (TC) in the low-energy region is almost zero when the light field is not added, but with the increase of light intensity, the TC increased significantly in the zone increases significantly, that is, a quasi-bound band appears. These features are due to the energy exchange between electrons and the light field when electrons tunnel through the superlattice structure under light irradiation. In addition, light and magnetic fields can significantly change the spin polarization of electrons. Under a certain magnetic field intensity (B = 2 T), the light field significantly changes the spin polarization of electrons, the main effect is that the width of the spin polarization platform narrows and oscillatory peaks are accompanied on both sides of the platform. This effect is strengthened with the increase of the light field intensity. However, when the magnetic field is stronger (B = 5 T), the opposite is true. These show that the spin polarization can be modulated by the light field. Finally, the tunneling time of spin-up and spin-down electrons is studied by the evolution of Gaussian wave packets in the structure. The results show that the tunneling time depends on a spin of electrons, and it can be seen that the tunneling time of the spin-down electron is shorter than that of the spin-up electron in the superlattice structure. These remarkable properties of spin polarized transport may be beneficial for the devising tunable spin filtering devices based on diluted magnetic semiconductor/semiconductor superlattice structure.
      通信作者: 李春雷, licl@cnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174038)资助的课题.
      Corresponding author: Li Chun-Lei, licl@cnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174038).
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Egues J C 1998 Phys. Rev. Lett. 80 4578Google Scholar

    [3]

    Chang K, Peeters F M 2001 Solid State Commun. 120 181Google Scholar

    [4]

    Slobodskyy A, Gould C, Slobodskyy T, Becker C R, Schmidt G, Molenkamp L W 2003 Phys. Rev. Lett. 90 246601Google Scholar

    [5]

    Hijano A, Bergeret F S, Giazotto F, Braggio A 2023 Phys. Rev. Appl. 19 044024Google Scholar

    [6]

    Zhu Z G, Su G 2004 Phys. Rev. B 70 193310Google Scholar

    [7]

    Zhai F, Guo Y, Gu B L 2003 J. Appl. Phys. 94 5432Google Scholar

    [8]

    Yang P F, Zhu R, Guo Y 2015 AIP Advances 5 077115Google Scholar

    [9]

    Furdyna J K 1988 J. Appl. Phys. 64 R29Google Scholar

    [10]

    Papp G, Borza S, Peeters F M 2005 J. Appl. Phys. 97 113901Google Scholar

    [11]

    Chishti S S, Ghosh B, Verma A, Salimath A K 2014 J. Nanoelectron. Optoe 9 44Google Scholar

    [12]

    Evropeytsev E A, Klimko G V, Komissarova T A, et al. 2014 Semiconductors 48 30Google Scholar

    [13]

    Ming Y, Gong J, Zhang R Q 2011 J. Appl. Phys. 110 093717Google Scholar

    [14]

    Havu P, Tuomisto N, Väänänen R, Puska M J, Nieminen R M 2005 Phys. Rev. B 71 235301Google Scholar

    [15]

    Wójcik P, Adamowski J, Wołoszyn M, Spisak B J 2012 Phys. Rev. B 86 165318Google Scholar

    [16]

    Gruber T H, Keim M, Fiederling R, Reuscher G, Ossau W, Schmidt G, Molenkamp L W, Waag A 2001 Appl. Phys. Lett. 78 1101Google Scholar

    [17]

    Schmidt G, Richter G, Grabs P, Gould C, Ferrand D, Molenkamp L W 2001 Phys. Rev. Lett. 87 227203Google Scholar

    [18]

    Schmidt G, Gould C, Grabs P, Lunde A M, Richter G, Slobodskyy A, Molenkamp L W 2004 Phys. Rev. Lett. 92 226602Google Scholar

    [19]

    Guo Y, Wang H, Gu B L, Kawazoe Y 2000 J. Appl. Phys. 88 6614Google Scholar

    [20]

    Guo Y, Chen X Y, Zhai F, Gu B L, Kawazoe Y 2002 Appl. Phys. Lett. 80 4591Google Scholar

    [21]

    Guo Y, Shen F R, Chen X Y 2012 Appl. Phys. Lett. 101 012410Google Scholar

    [22]

    张存喜, 王瑞, 孔令民 2010 59 4980Google Scholar

    Zhang C X, Wang R, Kong L M 2010 Acta Phys. Sin. 59 4980Google Scholar

    [23]

    Li C L, Ruan R Y, Guo Y 2016 J. Appl. Phys. 119 014306Google Scholar

    [24]

    Dayem A H, Martin R J 1962 Phys. Rev. Lett. 8 246Google Scholar

    [25]

    Tien P K, Gordon J P 1963 Phys. Rev. 129 647Google Scholar

    [26]

    Sun Q F, Wang J, Lin T H 2000 Phys. Rev. B 61 12643Google Scholar

    [27]

    Bruder C, Schoeller H 1994 Phys. Rev. Lett. 72 1076Google Scholar

    [28]

    Shibata K, Umeno A, Cha K M, Hirakawa K 2012 Phys. Rev. Lett. 109 077401Google Scholar

    [29]

    Schoelkopf R J, Kozhevnikov A A, Prober D E 1998 Phys. Rev. Lett. 80 2437Google Scholar

    [30]

    König B, Zehnder U, Yakovlev D R, Ossau W, Gerhard T, Keim M, Waag A, Landwehr G 1999 Phys. Rev. B 60 2653Google Scholar

    [31]

    Harada N, Kuroda S 1986 Jap. J. Appl.Phys. 25 L871Google Scholar

    [32]

    曾谨言 2000 量子力学(上卷) (北京: 科学出版社) 第721页

    Zeng J Y 2000 Quantum Mechanics (Vol. 1) (Beijing: Science Press) p721

  • 图 1  光场$ V_{1}\mathrm{cos}(\omega t) $辐照下自旋相关$ {\rm ZnSe}/{\rm Zn}_{1-x}{\rm Mn}_{x}{\rm Se} $ 超晶格势 (a) $ B = 5 $ T; (b) $ B = 2 $ T

    Fig. 1.  Spin-dependent potential profiles of the $ {\rm ZnSe}/ $$ {\rm Zn}_{1-x}{\rm Mn}_{x}{\rm Se} $ superlattice under a light field $ V_{1}\mathrm{cos}(\omega t) $: (a) $ B = 5 $ T; (b) $ B = 2 $ T.

    图 2  光场辐照下, 不同磁场强度电子自旋相关透射系数和自旋极化度, 其中光子能量$ \hbar \omega = 0.2 $ meV, 光场强度$ V_{1} = 0, $$ 0.2, \;0.4, \;0.6 $ meV

    Fig. 2.  Spin-dependent transmission coefficients and spin polarization for different magnetic induction intensity under the light field, where the energy of photon is $ \hbar \omega = 0.2 $ meV, and amplitude of the light field is $ V_{1} = 0,\; 0.2,\; 0.4,\; 0.6 $ meV.

    图 3  稀磁半导体/半导体超晶格结构中, 不同时刻不同自旋方向电子概率密度$ |\psi(z, t)|^{2} $随坐标z的变化关系曲线 (a)自旋向上; (b) 自旋向下

    Fig. 3.  Spin-dependent electron probability density $ |\psi(z, t)|^{2} $ as a function of coordinate z for different times in the superlattices of dilute magnetic semiconductors/semiconductors structure: (a) Spin up; (b) spin down.

    图 4  稀磁半导体/半导体(DMS/S) 超晶格结构中, 位置$ z=-100,\; -10, \;205,\; 415 $ nm 处, 不同自旋方向电子概率密度$ |\psi(z, t)|^{2} $随时间t的变化关系曲线

    Fig. 4.  Spin-dependent electron probability density $ |\psi(z, t)|^{2} $ as a function of time t for different coordinates $ z=-100, \;-10, $$ 205, \;415 $ nm in the superlattices of dilute magnetic semiconductors/semiconductors structure.

    Baidu
  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Egues J C 1998 Phys. Rev. Lett. 80 4578Google Scholar

    [3]

    Chang K, Peeters F M 2001 Solid State Commun. 120 181Google Scholar

    [4]

    Slobodskyy A, Gould C, Slobodskyy T, Becker C R, Schmidt G, Molenkamp L W 2003 Phys. Rev. Lett. 90 246601Google Scholar

    [5]

    Hijano A, Bergeret F S, Giazotto F, Braggio A 2023 Phys. Rev. Appl. 19 044024Google Scholar

    [6]

    Zhu Z G, Su G 2004 Phys. Rev. B 70 193310Google Scholar

    [7]

    Zhai F, Guo Y, Gu B L 2003 J. Appl. Phys. 94 5432Google Scholar

    [8]

    Yang P F, Zhu R, Guo Y 2015 AIP Advances 5 077115Google Scholar

    [9]

    Furdyna J K 1988 J. Appl. Phys. 64 R29Google Scholar

    [10]

    Papp G, Borza S, Peeters F M 2005 J. Appl. Phys. 97 113901Google Scholar

    [11]

    Chishti S S, Ghosh B, Verma A, Salimath A K 2014 J. Nanoelectron. Optoe 9 44Google Scholar

    [12]

    Evropeytsev E A, Klimko G V, Komissarova T A, et al. 2014 Semiconductors 48 30Google Scholar

    [13]

    Ming Y, Gong J, Zhang R Q 2011 J. Appl. Phys. 110 093717Google Scholar

    [14]

    Havu P, Tuomisto N, Väänänen R, Puska M J, Nieminen R M 2005 Phys. Rev. B 71 235301Google Scholar

    [15]

    Wójcik P, Adamowski J, Wołoszyn M, Spisak B J 2012 Phys. Rev. B 86 165318Google Scholar

    [16]

    Gruber T H, Keim M, Fiederling R, Reuscher G, Ossau W, Schmidt G, Molenkamp L W, Waag A 2001 Appl. Phys. Lett. 78 1101Google Scholar

    [17]

    Schmidt G, Richter G, Grabs P, Gould C, Ferrand D, Molenkamp L W 2001 Phys. Rev. Lett. 87 227203Google Scholar

    [18]

    Schmidt G, Gould C, Grabs P, Lunde A M, Richter G, Slobodskyy A, Molenkamp L W 2004 Phys. Rev. Lett. 92 226602Google Scholar

    [19]

    Guo Y, Wang H, Gu B L, Kawazoe Y 2000 J. Appl. Phys. 88 6614Google Scholar

    [20]

    Guo Y, Chen X Y, Zhai F, Gu B L, Kawazoe Y 2002 Appl. Phys. Lett. 80 4591Google Scholar

    [21]

    Guo Y, Shen F R, Chen X Y 2012 Appl. Phys. Lett. 101 012410Google Scholar

    [22]

    张存喜, 王瑞, 孔令民 2010 59 4980Google Scholar

    Zhang C X, Wang R, Kong L M 2010 Acta Phys. Sin. 59 4980Google Scholar

    [23]

    Li C L, Ruan R Y, Guo Y 2016 J. Appl. Phys. 119 014306Google Scholar

    [24]

    Dayem A H, Martin R J 1962 Phys. Rev. Lett. 8 246Google Scholar

    [25]

    Tien P K, Gordon J P 1963 Phys. Rev. 129 647Google Scholar

    [26]

    Sun Q F, Wang J, Lin T H 2000 Phys. Rev. B 61 12643Google Scholar

    [27]

    Bruder C, Schoeller H 1994 Phys. Rev. Lett. 72 1076Google Scholar

    [28]

    Shibata K, Umeno A, Cha K M, Hirakawa K 2012 Phys. Rev. Lett. 109 077401Google Scholar

    [29]

    Schoelkopf R J, Kozhevnikov A A, Prober D E 1998 Phys. Rev. Lett. 80 2437Google Scholar

    [30]

    König B, Zehnder U, Yakovlev D R, Ossau W, Gerhard T, Keim M, Waag A, Landwehr G 1999 Phys. Rev. B 60 2653Google Scholar

    [31]

    Harada N, Kuroda S 1986 Jap. J. Appl.Phys. 25 L871Google Scholar

    [32]

    曾谨言 2000 量子力学(上卷) (北京: 科学出版社) 第721页

    Zeng J Y 2000 Quantum Mechanics (Vol. 1) (Beijing: Science Press) p721

  • [1] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化.  , 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] 邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁. II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光.  , 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [3] 邓正, 赵国强, 靳常青. 自旋和电荷分别掺杂的新一类稀磁 半导体研究进展.  , 2019, 68(16): 167502. doi: 10.7498/aps.68.20191114
    [4] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间.  , 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [5] 王艳海. 强场隧穿电离模式下的氦原子电离时间问题研究.  , 2016, 65(15): 153201. doi: 10.7498/aps.65.153201
    [6] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究.  , 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [7] 王瑞琴, 宫箭, 武建英, 陈军. 对称双势垒量子阱中自旋极化输运的时间特性.  , 2013, 62(8): 087303. doi: 10.7498/aps.62.087303
    [8] 安兴涛, 穆惠英, 咸立芬, 刘建军. 量子点双链中电子自旋极化输运性质.  , 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [9] 王辉, 胡贵超, 任俊峰. 扰动对有机磁体器件自旋极化输运特性的影响.  , 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [10] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响.  , 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [11] 王如志, 袁瑞玚, 宋雪梅, 魏金生, 严辉. 半导体超晶格系统中的磁电调控电子自旋输运研究.  , 2009, 58(5): 3437-3442. doi: 10.7498/aps.58.3437
    [12] 肖贤波, 李小毛, 陈宇光. 含stubs量子波导系统的电子自旋极化输运性质.  , 2009, 58(11): 7909-7913. doi: 10.7498/aps.58.7909
    [13] 姚建明, 杨翀. AB效应对自旋多端输运的影响.  , 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [14] 郑小宏, 戴振翔, 王贤龙, 曾雉. B与N掺杂对单层石墨纳米带自旋极化输运的影响.  , 2009, 58(13): 259-S265. doi: 10.7498/aps.58.259
    [15] 杜 坚, 张 鹏, 刘继红, 李金亮, 李玉现. 含δ势垒的铁磁/半导体/铁磁异质结中的自旋输运和渡越时间.  , 2008, 57(11): 7221-7227. doi: 10.7498/aps.57.7221
    [16] 董正超. 磁性半导体/磁性d波超导结中的自旋极化输运.  , 2008, 57(9): 5937-5943. doi: 10.7498/aps.57.5937
    [17] 肖贤波, 李小毛, 周光辉. 电磁波辐照下量子线的电子自旋极化输运性质.  , 2007, 56(3): 1649-1654. doi: 10.7498/aps.56.1649
    [18] 李统藏, 刘之景, 王克逸. 自旋极化电子从铁磁金属注入半导体时自旋极化的计算.  , 2003, 52(11): 2912-2917. doi: 10.7498/aps.52.2912
    [19] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运.  , 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
    [20] 熊诗杰. 非晶态半导体超晶格中载流子的随机输运过程.  , 1986, 35(8): 1010-1018. doi: 10.7498/aps.35.1010
计量
  • 文章访问数:  1876
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-04
  • 修回日期:  2023-08-03
  • 上网日期:  2023-09-09
  • 刊出日期:  2023-11-20

/

返回文章
返回
Baidu
map