搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子计算的高能核物理研究

李天胤 邢宏喜 张旦波

引用本文:
Citation:

基于量子计算的高能核物理研究

李天胤, 邢宏喜, 张旦波

Quantum computing based high-energy nuclear physics

Li Tian-Yin, Xing Hong-Xi, Zhang Dan-Bo
PDF
HTML
导出引用
  • 高能核物理旨在探索和理解物质在夸克与胶子层次的组成及演化的基本规律. 然而, 从量子色动力学第一性原理出发来求解高能核物理, 经典计算却存在本质困难. 近几年来, 量子计算因给模拟高能核物理提供了潜在的根本性解决方案而受到了较大的关注. 本文简要回顾了高能核物理量子模拟的现状, 介绍了态制备及光锥关联函数测量等典型量子算法, 并通过强子散射振幅和有限温有限密物质相结构的研究, 分别展示了量子计算在解决高能核物理中含时问题和符号问题上的优势.
    High-energy nuclear physics aims to explore and understand the physics of matter composed of quarks and gluons. However, it is intrinsically difficult to simulate high-energy nuclear physics from the first principle based quantum chromodynamics by using classical computers. In recent years, quantum computing has received intensive attention because it is expected to provide an ultimate solution for simulating high-energy nuclear physics. In this paper, we firstly review recent advances in quantum simulation of high-energy nuclear physics. Then we introduce some standard quantum algorithms, such as state preparation and measurements of light-cone correlation function. Finally, we demonstrate the advantage of quantum computing for solving the real-time evolution and the sign problems by studying hadronic scattering amplitude and phase structure of finite-temperature and finite-density matter, respectively.
      通信作者: 邢宏喜, hxing@m.scnu.edu.cn ; 张旦波, dbzhang@m.scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12005065, 12022512, 12035007)、广东省基础与应用基础研究基金(批准号: 2023A1515011460, 2021A1515010317)和广东省重点实验室(批准号: 2020B1212060066)资助的课题.
      Corresponding author: Xing Hong-Xi, hxing@m.scnu.edu.cn ; Zhang Dan-Bo, dbzhang@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12005065, 12022512, 12035007), the Basic and Applied Basic Research Fund of Guangdong Province, China (Grant Nos. 2023A1515011460, 2021A1515010317), and the Guangdong Provincial Key Laboratory, China (Grant No. 2020B1212060066).
    [1]

    Alexandru A, Basar G, Bedaque P F, Vartak S, Warrington N C 2016 Phys. Rev. Lett. 117 081602Google Scholar

    [2]

    Troyer M, Wiese U J 2005 Phys. Rev. Lett. 94 170201Google Scholar

    [3]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [4]

    Jordan S P, Lee K S M, Preskill J 2012 Science 336 1130Google Scholar

    [5]

    Lamm H, Lawrence S, Yamauchi Y 2020 Phys. Rev. Res. 2 013272Google Scholar

    [6]

    Mueller N, Tarasov A, Venugopalan R 2020 Phys. Rev. D 102 016007Google Scholar

    [7]

    Echevarria M G, Egusquiza I L, Rico E, Schnell G 2021 Phys. Rev. D 104 014512

    [8]

    Qian W, Basili R, Pal S, Luecke G, Vary J P 2022 Phys. Rev. Res. 4 043193Google Scholar

    [9]

    Li T, Guo X, Lai W K, Liu X, Wang E, Xing H, Zhang D B, Zhu S L 2022 Phys. Rev. D 10 5

    [10]

    Li T, Guo X, Lai W K, Liu X, Wang E, Xing H, Zhang D B, Zhu S L 2023 Science China Physics, Mechanics & Astronomy 66 281011

    [11]

    Bauer C W, de Jong W A, Nachman B, Provasoli D 2021 Phys. Rev. Lett. 126 062001Google Scholar

    [12]

    Bepari K, Malik S, Spannowsky M, Williams S 2022 Phys. Rev. D 106 056002Google Scholar

    [13]

    Hu Z, Xia R, Kais S 2020 Sci. Rep. 10 3301Google Scholar

    [14]

    De Jong W A, Metcalf M, Mulligan J, Płoskoń M, Ringer F, Yao X 2021 Phys. Rev. D 104 051501

    [15]

    Yao X 2022 arXiv: 2205.07902 [High Energy Physics-Phenomenology

    [16]

    Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J, Pan J W 2022 Science 377 abl6277

    [17]

    de Jong W A, Lee K, Mulligan J, Płoskoń M, Ringer F, Yao X 2022 Phys. Rev. D 106 054508

    [18]

    Briceño R A, Guerrero J V, Hansen M T, Sturzu A M 2021 Phys. Rev. D 103 014506

    [19]

    Li T, Lai W K, Wang E, Xing H 2023 arXiv: 2301.04179 [High Energy Physics - Phenomenology

    [20]

    Martinez E A, Muschik C A, Schindler M, et al. 2016 Nature 534 516Google Scholar

    [21]

    Atas Y Y, Haase J F, Zhang J, Wei V, Pfaendler S M L, Lewis R, Muschik C A 2022 arXiv: 2207.03473 [Quantum Physics

    [22]

    Czajka A M, Kang Z B, Ma H, Zhao F 2022 JHEP 08 209

    [23]

    Davoudi Z, Mueller N, Powers C 2022 arXiv: 2208.13112 [High Energy Physics - Lattice

    [24]

    Tomiya A 2023 PoS LATTICE2022 039

    [25]

    Czajka A M, Kang Z B, Tee Y, Zhao F 2022 arXiv: 2210.03062 [High Energy Physics - Phenomenology

    [26]

    Xie X D, Guo X, Xing H, Xue Z Y, Zhang D B, Zhu S L 2022 Phys. Rev. D 106 054509

    [27]

    McClean J R, Kimchi-Schwartz M E, Carter J, de Jong W A 2017 Phys. Rev. A 95 042308Google Scholar

    [28]

    Nakanishi K M, Mitarai K, Fujii K 2019 Phys. Rev. Res. 1 033062Google Scholar

    [29]

    Higgott O, Wang D, Brierley S 2019 Quantum 3 156Google Scholar

    [30]

    Zhang D B, Yuan Z H, Yin T 2020 arXiv: 2006.15781 [Quantum Physics

    [31]

    Bärtschi A, Eidenbenz S 2019 In Gąsieniec L A, Jansson J, Levcopoulos C, editors, Fundamentals of Computation Theory (Cham: Springer International Publishing) pp126–139

    [32]

    Farhi E, Goldstone J, Gutmann S 2014 arXiv: 1411.4028 [Quantum Physics

    [33]

    Wiersema R, Zhou C, de Sereville Y, Carrasquilla J F, Kim Y B, Yuen H 2020 PRX Quantum 1 020319Google Scholar

    [34]

    Zhang D B, Zhang G Q, Xue Z Y, Zhu S L, Wang Z 2021 Phys. Rev. Lett 127 020502Google Scholar

    [35]

    Francis A, Zhu D, Huerta Alderete C, Johri S, Xiao X, Freericks J K, Monroe C, Linke N M, Kemper A F 2021 Sci. Adv. 7 eabf2447Google Scholar

    [36]

    Verdon G, Marks J, Nanda S, Leichenauer S, Hidary J 2019 arXiv: 1910.02071 [Quantum Physics

    [37]

    Wu J, Hsieh T H 2019 Phys. Rev. Lett 123 220502Google Scholar

    [38]

    Zhu D, Johri S, Linke N M, Landsman K, Alderete C H, Nguyen N H, Matsuura A, Hsieh T, Monroe C 2020 Proc. Natl. Acad. Sci. 117 25402Google Scholar

    [39]

    Martyn J, Swingle B 2019 Phys. Rev. A 100 032107Google Scholar

    [40]

    Kliesch M, Gogolin C, Kastoryano M J, Riera A, Eisert J 2014 Phys. Rev. X 4 031019

    [41]

    Pedernales J S, Di Candia R, Egusquiza I L, Casanova J, Solano E 2014 Phys. Rev. Lett. 113 020505Google Scholar

    [42]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press) pp206–208

    [43]

    Lin H W, Nocera E R, Olness F, et al. 2018 Prog. Part. Nucl. Phys. 100 107Google Scholar

    [44]

    Gao J, Harland-Lang L, Rojo J 2018 Phys. Rep. 742 1Google Scholar

    [45]

    Lepage G P, Brodsky S J 1980 Phys. Rev. D 22 2157Google Scholar

    [46]

    Efremov A V, Radyushkin A V 1980 Phys. Lett. B 94 245Google Scholar

    [47]

    Ji X 2013 Phys. Rev. Lett. 110 262002Google Scholar

    [48]

    Ji X 2014 Sci. China Phys. Mech. Astron. 57 1407Google Scholar

    [49]

    Ma Y Q, Qiu J W 2018 Phys. Rev. D 98 074021Google Scholar

    [50]

    Ma Y Q, Qiu J W 2018 Phys. Rev. Lett. 120 022003Google Scholar

    [51]

    Radyushkin A V 2017 Phys. Rev. D 96 034025Google Scholar

    [52]

    Orginos K, Radyushkin A, Karpie J, Zafeiropoulos S 2017 Phys. Rev. D 96 094503

    [53]

    Liang J, Draper T, Liu K F, Rothkopf A, Yang Y B 2020 Phys. Rev. D 101 114503Google Scholar

    [54]

    Chambers A J, Horsley R, Nakamura Y, Perlt H, Rakow P E L, Schierholz G, Schiller A, Somfleth K, Young R D, Zanotti J M 2017 Phys. Rev. Lett. 118 242001Google Scholar

    [55]

    Sufian R S, Karpie J, Egerer C, Orginos K, Qiu J W, Richards D G 2019 Phys. Rev. D 99 074507Google Scholar

    [56]

    Izubuchi T, Jin L, Kallidonis C, Karthik N, Mukherjee S, Petreczky P, Shugert C, Syritsyn S 2019 Phys. Rev. D 100 034516Google Scholar

    [57]

    Lin H W, Chen J W, Fan Z, Zhang J H, Zhang R 2021 Phys. Rev. D 103 014516

    [58]

    Musch B U, Hagler P, Engelhardt M, Negele J W, Schafer A 2012 Phys. Rev. D 85 094510

    [59]

    Detmold W, Melnitchouk W, Negele J W, Renner D B, Thomas A W 2001 Phys. Rev. Lett. 87 172001Google Scholar

    [60]

    Hagler Ph, Schroers W, Bratt J, et al. 2008 Phys. Rev. D 77 094502

    [61]

    Alexandrou C, Constantinou M, Dinter S, Drach V, Hadjiyiannakou K, Jansen K, Koutsou G, Vaquero A 2015 JHEP 06 068

    [62]

    Alexandrou C, Bacchio S, Constantinou M, Finkenrath J, Hadjiyiannakou K, Jansen K, Koutsou G, Panagopoulos H, Spanoudes G 2020 Phys. Rev. D 101 094513

    [63]

    Zhang J H, Chen J W, Ji X, Jin L, Lin H W 2017 Phys. Rev. D 95 094514

    [64]

    Zhang J H, Jin L, Lin H W, Schäfer A, Sun P, Yang Y B, Zhang R, Zhao Y, Chen J W 2019 Nucl. Phys. B 939 429Google Scholar

    [65]

    Hua J, Chu M H, Sun P, Wang W, Xu J, Yang Y B, Zhang J H, Zhang Q A 2021 Phys. Rev. Lett. 127 062002Google Scholar

    [66]

    Hua J, Chu M H, He J C, et al. 2022 Phys. Rev. Lett. 129 132001Google Scholar

    [67]

    Luscher M 1986 Commun. Math. Phys. 105 153Google Scholar

    [68]

    Luscher M 1991 Nucl. Phys. B 354 531Google Scholar

    [69]

    Briceno R A, Dudek J J, Young R D 2018 Rev. Mod. Phys. 90 025001Google Scholar

    [70]

    Davoudi Z 2018 PoS LATTICE 2018 014

    [71]

    Hansen M T, Sharpe S R 2019 Ann. Rev. Nucl. Part. Sci. 69 65Google Scholar

    [72]

    Nambu Y, Jona-Lasinio G 1961 Phys. Rev. 124 246Google Scholar

    [73]

    Nambu Y, Jona-Lasinio G 1961 Phys. Rev. 122 345Google Scholar

    [74]

    Gross D J, Neveu A 1974 Phys. Rev. D 10 3235Google Scholar

    [75]

    Backens S, Shnirman A, Makhlin Y 2019 Sci. Rep. 9 2

    [76]

    Weinberg P, Bukov M 2017 SciPost Phys. 2 003Google Scholar

    [77]

    Steiger D S, Häner T, Troyer M 2018 Quantum 2 49Google Scholar

    [78]

    Collins J 2013 Foundations of Perturbative QCD (Cambridge: Cambridge University Press) pp174–176

    [79]

    Ishikawa T, Jin L, Lin H W, Schäfer A, Yang Y B, Zhang J H, Zhao Y 2019 Sci. China Phys. Mech. Astron. 62 991021Google Scholar

    [80]

    Jia Y, Liang S, Xiong X, Yu R 2018 Phys. Rev. D 98 054011Google Scholar

    [81]

    Barry P C, Ji C R, Sato N, Melnitchouk W 2021 Phys. Rev. Lett. 127 232001Google Scholar

    [82]

    Chernyak V L, Zhitnitsky A R 1984 Phys. Rep. 112 173Google Scholar

    [83]

    Zhang R, Honkala C, Lin H W, Chen J W 2020 Phys. Rev. D 102 094519

    [84]

    Jordan S P, Lee K S M, Preskill J 2014 Quant. Inf. Comput. 14 1014

    [85]

    Jordan S P, Lee K S M, Preskill J 2014 arXiv: 1404.7115 [High Energy Physics-Theory

    [86]

    Lehmann H, Symanzik H, Zimmerman W 1955 Nuovo Cimento 1 205Google Scholar

    [87]

    Abdalla E, Abdalla M C B, Rothe K D 1991 Non-perturbative Methods in 2D Quantum Field Theory (Singaproe: World Scientific Publishing House

    [88]

    Lowenstein J, Swieca J 1971 Ann. Phys. 68 172Google Scholar

    [89]

    Byrnes T, Sriganesh P, Bursill R, Hamer C 2002 Phys. Rev. D 66 013002Google Scholar

    [90]

    Buyens B, Montangero S, Haegeman J, Verstraete F, Van Acoleyen K 2017 Phys. Rev. D 95 094509

    [91]

    Zinn-Justin J 2002 In New Developments in Quantum Field Theory (Springer), pp217–232

    [92]

    Kogut J, Susskind L 1975 Phys. Rev. D 11 395

    [93]

    Fetter A L, Walecka J D 2012 Quantum Theory of Many-particle Systems (New York: Courier Corporation

    [94]

    Casher A, Kogut J, Susskind L 1974 Phys. Rev. D 10 732Google Scholar

    [95]

    Hamer C, Kogut J, Crewther D, Mazzolini M 1982 Nucl. Phys. B 208 413Google Scholar

    [96]

    Buyens B, Verstraete F, Van Acoleyen K 2016 Phys. Rev. D 94 085018Google Scholar

    [97]

    Johansson J R, Nation P D, Nori F 2012 Comput. Phys. Commun. 183 1760Google Scholar

    [98]

    Pisarski R D, Alvarez O 1982 Phys. Rev. D 26 3735Google Scholar

    [99]

    Fodor Z, Katz S D 2004 J. High Energy Phys. 2004 050

    [100]

    D’ Elia M, Lombardo M P 2003 Phys. Rev. D 67 014505

    [101]

    Allton C R, Ejiri S, Hands S J, Kaczmarek O, Karsch F, Laermann E, Schmidt C 2003 Phys. Rev. D 68 014507

  • 图 1  变分法制备强子态的量子线路图. 其中量子计算机通过拟设U(θ)来生成试探波函数以及测量试探波函数下$ E_l(\theta) $的值. 经典计算机负责更新和优化参数θ

    Fig. 1.  Variational quantum algorithm for preparation of the hadronic state. The generation of trial state and the measurement of $ E_l(\theta) $ are performed on a quantum computer, while the optimization of parameters θ is done with classical computing.

    图 2  可同时制备吉布斯态和计算自由能的变分算法量子线路图. 在量子计算机中执行的是初始混态的制备和参数化幺正演化$ U(\phi) $, 而参数$ (\theta, \phi) $的优化通过经典计算机来执行

    Fig. 2.  A pictorial representation of the variational quantum algorithm, which can prepare thermal states and compute the corresponding free energy. The preparation of initial mixed state and the evolution $ U(\phi) $ are done on a quantum computer, while the optimization of $ (\theta, \phi) $ should be done with a classical computer.

    图 3  计算动力学两点关联函数量子线路. 在辅助比特上测量$ \sigma^1 $$ \sigma^2 $即可得到关联函数的实部和虚部

    Fig. 3.  Quantum circuit for calculation of the two point correlation function. The real and imaginary part of the correlation function can be obtained by performing measurements of $ \sigma^1 $ and $ \sigma^2 $ on the auxiliary qubit, respectively.

    图 4  部分子分布计算的量子线路. 其中虚线左边部分为制备强子态的量子线路, 右边部分为测量动力学两点关联函数线路

    Fig. 4.  Quantum circuit for calculation of PDFs. The left side of the dashed line of the circuit is for hadronic state preparation, while the right side is for the correlation function.

    图 5  坐标空间夸克场两点关联函数的实部(实线)和虚部(虚线), 其中离散的点是格点计算给出的数值, 线由格点数据结果插值得到

    Fig. 5.  Real (dashed lines) and imaginary parts (solid lines) of the quark correlation function in position space. The discrete points are the lattice data and the lines are obtained by interpolations.

    图 6  量子计算经典模拟获得的PDF(空心点)和格点NJL模型精确对角化获得的PDF(实线), 其中不同插值方法带来的误差由误差棒标记出

    Fig. 6.  The quark PDF from quantum computing (open markers) and ED (solid lines). The error bars/bands arise from the estimated uncertainties due to different interpolation methods.

    图 7  模拟左矢为真空, 右矢为强子的光锥关联函数$\langle\varOmega|{\cal{O}}| h\rangle$的量子线路图

    Fig. 7.  Quantum circuit for the light-cone correlator $ \langle\varOmega|{\cal{O}}| h\rangle $

    图 8  1+1维NJL模型LCDA对耦合常数g的依赖, 其中固定$ N=14 $, $ m_{\rm{h}}=1.5 a^{-1} $

    Fig. 8.  LCDA for the 1+1 dimensional NJL model with $ N = 14 $, $ m_{\rm{h}} = 1.5a^{-1} $.

    图 9  1+1维NJL模型LCDA对强子质量$ m_{\rm{h}} $的依赖, 其中固定$ N=14 $, $ g=0.1 $

    Fig. 9.  Dependence of the LCDA on the hadron mass $ m_{\rm{h}} $ with fixed bare coupling $ g=0.1 $ in the 1+1 dimensional NJL model

    图 10  1+1维NJL模型$ {\rm Tr}K_\Psi(p) $的实部. 图中以$ p^0 $为变量, 固定$ p^1=0 $

    Fig. 10.  Real part of $ {\rm Tr}K_\Psi(p) $ for the 1+1-dimensional NJL model as a function of $ p^0 a $ with $ p^1=0 $.

    图 11  1+1维单味道NJL模型四点函数 $ G^{\alpha\beta\alpha\beta}_\Psi(p_1, $$ k_1, k_2) $的实部. 其中外腿动量选定为$ k_1=(k_1^0, 0), \, k_2=(0, $$ \pi/a), \, p_1=(0, 0) $

    Fig. 11.  Real part of $ G^{\alpha\beta\alpha\beta}_\Psi(p_1, k_1, k_2) $ in the 1+1-dimensional 1-flavor NJL model as a function of $ k_1^0 a $, with $ k_1=(k_1^0, 0), \, k_2=(0, \pi/a), \, p_1=(0, 0) $.

    图 12  不同背景电场 $ \varepsilon $下的弦张力. 其中给定 $ m=1, \;g=1,\; \varpi=1 $, $ N $= 6 (a) 弦张力对$ \beta $的依赖; (b) 弦张力的对数对温度$ T $的依赖

    Fig. 12.  String tensions under different $ \varepsilon $ in the case $ m=1,\; g=1, \;\varpi=1 $, $ N $= 6: (a) The string tension as a function of the inverse temperature $ \beta $; (b) logarithm of the string tension as a function of the temperature $ T $.

    图 13  在给定参数 $ \varepsilon=0.5,\; m=1, \;g=1, \;\varpi=1,\; N=6 $下的弦张力 (a) 不同化学势 μ下弦张力对温度$ T $的依赖; (b) 弦张力对温度$ T $和化学势μ的依赖

    Fig. 13.  The string tension in the case $ \varepsilon=0.5,\; m=1,\; g=1,\; \varpi=1\;, N=6 $: (a) At different μ, the string tension as a function of the temperature $ T $; (b) the string tension as a function of the temperature $ T $ and the chemical potential μ.

    Baidu
  • [1]

    Alexandru A, Basar G, Bedaque P F, Vartak S, Warrington N C 2016 Phys. Rev. Lett. 117 081602Google Scholar

    [2]

    Troyer M, Wiese U J 2005 Phys. Rev. Lett. 94 170201Google Scholar

    [3]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [4]

    Jordan S P, Lee K S M, Preskill J 2012 Science 336 1130Google Scholar

    [5]

    Lamm H, Lawrence S, Yamauchi Y 2020 Phys. Rev. Res. 2 013272Google Scholar

    [6]

    Mueller N, Tarasov A, Venugopalan R 2020 Phys. Rev. D 102 016007Google Scholar

    [7]

    Echevarria M G, Egusquiza I L, Rico E, Schnell G 2021 Phys. Rev. D 104 014512

    [8]

    Qian W, Basili R, Pal S, Luecke G, Vary J P 2022 Phys. Rev. Res. 4 043193Google Scholar

    [9]

    Li T, Guo X, Lai W K, Liu X, Wang E, Xing H, Zhang D B, Zhu S L 2022 Phys. Rev. D 10 5

    [10]

    Li T, Guo X, Lai W K, Liu X, Wang E, Xing H, Zhang D B, Zhu S L 2023 Science China Physics, Mechanics & Astronomy 66 281011

    [11]

    Bauer C W, de Jong W A, Nachman B, Provasoli D 2021 Phys. Rev. Lett. 126 062001Google Scholar

    [12]

    Bepari K, Malik S, Spannowsky M, Williams S 2022 Phys. Rev. D 106 056002Google Scholar

    [13]

    Hu Z, Xia R, Kais S 2020 Sci. Rep. 10 3301Google Scholar

    [14]

    De Jong W A, Metcalf M, Mulligan J, Płoskoń M, Ringer F, Yao X 2021 Phys. Rev. D 104 051501

    [15]

    Yao X 2022 arXiv: 2205.07902 [High Energy Physics-Phenomenology

    [16]

    Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J, Pan J W 2022 Science 377 abl6277

    [17]

    de Jong W A, Lee K, Mulligan J, Płoskoń M, Ringer F, Yao X 2022 Phys. Rev. D 106 054508

    [18]

    Briceño R A, Guerrero J V, Hansen M T, Sturzu A M 2021 Phys. Rev. D 103 014506

    [19]

    Li T, Lai W K, Wang E, Xing H 2023 arXiv: 2301.04179 [High Energy Physics - Phenomenology

    [20]

    Martinez E A, Muschik C A, Schindler M, et al. 2016 Nature 534 516Google Scholar

    [21]

    Atas Y Y, Haase J F, Zhang J, Wei V, Pfaendler S M L, Lewis R, Muschik C A 2022 arXiv: 2207.03473 [Quantum Physics

    [22]

    Czajka A M, Kang Z B, Ma H, Zhao F 2022 JHEP 08 209

    [23]

    Davoudi Z, Mueller N, Powers C 2022 arXiv: 2208.13112 [High Energy Physics - Lattice

    [24]

    Tomiya A 2023 PoS LATTICE2022 039

    [25]

    Czajka A M, Kang Z B, Tee Y, Zhao F 2022 arXiv: 2210.03062 [High Energy Physics - Phenomenology

    [26]

    Xie X D, Guo X, Xing H, Xue Z Y, Zhang D B, Zhu S L 2022 Phys. Rev. D 106 054509

    [27]

    McClean J R, Kimchi-Schwartz M E, Carter J, de Jong W A 2017 Phys. Rev. A 95 042308Google Scholar

    [28]

    Nakanishi K M, Mitarai K, Fujii K 2019 Phys. Rev. Res. 1 033062Google Scholar

    [29]

    Higgott O, Wang D, Brierley S 2019 Quantum 3 156Google Scholar

    [30]

    Zhang D B, Yuan Z H, Yin T 2020 arXiv: 2006.15781 [Quantum Physics

    [31]

    Bärtschi A, Eidenbenz S 2019 In Gąsieniec L A, Jansson J, Levcopoulos C, editors, Fundamentals of Computation Theory (Cham: Springer International Publishing) pp126–139

    [32]

    Farhi E, Goldstone J, Gutmann S 2014 arXiv: 1411.4028 [Quantum Physics

    [33]

    Wiersema R, Zhou C, de Sereville Y, Carrasquilla J F, Kim Y B, Yuen H 2020 PRX Quantum 1 020319Google Scholar

    [34]

    Zhang D B, Zhang G Q, Xue Z Y, Zhu S L, Wang Z 2021 Phys. Rev. Lett 127 020502Google Scholar

    [35]

    Francis A, Zhu D, Huerta Alderete C, Johri S, Xiao X, Freericks J K, Monroe C, Linke N M, Kemper A F 2021 Sci. Adv. 7 eabf2447Google Scholar

    [36]

    Verdon G, Marks J, Nanda S, Leichenauer S, Hidary J 2019 arXiv: 1910.02071 [Quantum Physics

    [37]

    Wu J, Hsieh T H 2019 Phys. Rev. Lett 123 220502Google Scholar

    [38]

    Zhu D, Johri S, Linke N M, Landsman K, Alderete C H, Nguyen N H, Matsuura A, Hsieh T, Monroe C 2020 Proc. Natl. Acad. Sci. 117 25402Google Scholar

    [39]

    Martyn J, Swingle B 2019 Phys. Rev. A 100 032107Google Scholar

    [40]

    Kliesch M, Gogolin C, Kastoryano M J, Riera A, Eisert J 2014 Phys. Rev. X 4 031019

    [41]

    Pedernales J S, Di Candia R, Egusquiza I L, Casanova J, Solano E 2014 Phys. Rev. Lett. 113 020505Google Scholar

    [42]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press) pp206–208

    [43]

    Lin H W, Nocera E R, Olness F, et al. 2018 Prog. Part. Nucl. Phys. 100 107Google Scholar

    [44]

    Gao J, Harland-Lang L, Rojo J 2018 Phys. Rep. 742 1Google Scholar

    [45]

    Lepage G P, Brodsky S J 1980 Phys. Rev. D 22 2157Google Scholar

    [46]

    Efremov A V, Radyushkin A V 1980 Phys. Lett. B 94 245Google Scholar

    [47]

    Ji X 2013 Phys. Rev. Lett. 110 262002Google Scholar

    [48]

    Ji X 2014 Sci. China Phys. Mech. Astron. 57 1407Google Scholar

    [49]

    Ma Y Q, Qiu J W 2018 Phys. Rev. D 98 074021Google Scholar

    [50]

    Ma Y Q, Qiu J W 2018 Phys. Rev. Lett. 120 022003Google Scholar

    [51]

    Radyushkin A V 2017 Phys. Rev. D 96 034025Google Scholar

    [52]

    Orginos K, Radyushkin A, Karpie J, Zafeiropoulos S 2017 Phys. Rev. D 96 094503

    [53]

    Liang J, Draper T, Liu K F, Rothkopf A, Yang Y B 2020 Phys. Rev. D 101 114503Google Scholar

    [54]

    Chambers A J, Horsley R, Nakamura Y, Perlt H, Rakow P E L, Schierholz G, Schiller A, Somfleth K, Young R D, Zanotti J M 2017 Phys. Rev. Lett. 118 242001Google Scholar

    [55]

    Sufian R S, Karpie J, Egerer C, Orginos K, Qiu J W, Richards D G 2019 Phys. Rev. D 99 074507Google Scholar

    [56]

    Izubuchi T, Jin L, Kallidonis C, Karthik N, Mukherjee S, Petreczky P, Shugert C, Syritsyn S 2019 Phys. Rev. D 100 034516Google Scholar

    [57]

    Lin H W, Chen J W, Fan Z, Zhang J H, Zhang R 2021 Phys. Rev. D 103 014516

    [58]

    Musch B U, Hagler P, Engelhardt M, Negele J W, Schafer A 2012 Phys. Rev. D 85 094510

    [59]

    Detmold W, Melnitchouk W, Negele J W, Renner D B, Thomas A W 2001 Phys. Rev. Lett. 87 172001Google Scholar

    [60]

    Hagler Ph, Schroers W, Bratt J, et al. 2008 Phys. Rev. D 77 094502

    [61]

    Alexandrou C, Constantinou M, Dinter S, Drach V, Hadjiyiannakou K, Jansen K, Koutsou G, Vaquero A 2015 JHEP 06 068

    [62]

    Alexandrou C, Bacchio S, Constantinou M, Finkenrath J, Hadjiyiannakou K, Jansen K, Koutsou G, Panagopoulos H, Spanoudes G 2020 Phys. Rev. D 101 094513

    [63]

    Zhang J H, Chen J W, Ji X, Jin L, Lin H W 2017 Phys. Rev. D 95 094514

    [64]

    Zhang J H, Jin L, Lin H W, Schäfer A, Sun P, Yang Y B, Zhang R, Zhao Y, Chen J W 2019 Nucl. Phys. B 939 429Google Scholar

    [65]

    Hua J, Chu M H, Sun P, Wang W, Xu J, Yang Y B, Zhang J H, Zhang Q A 2021 Phys. Rev. Lett. 127 062002Google Scholar

    [66]

    Hua J, Chu M H, He J C, et al. 2022 Phys. Rev. Lett. 129 132001Google Scholar

    [67]

    Luscher M 1986 Commun. Math. Phys. 105 153Google Scholar

    [68]

    Luscher M 1991 Nucl. Phys. B 354 531Google Scholar

    [69]

    Briceno R A, Dudek J J, Young R D 2018 Rev. Mod. Phys. 90 025001Google Scholar

    [70]

    Davoudi Z 2018 PoS LATTICE 2018 014

    [71]

    Hansen M T, Sharpe S R 2019 Ann. Rev. Nucl. Part. Sci. 69 65Google Scholar

    [72]

    Nambu Y, Jona-Lasinio G 1961 Phys. Rev. 124 246Google Scholar

    [73]

    Nambu Y, Jona-Lasinio G 1961 Phys. Rev. 122 345Google Scholar

    [74]

    Gross D J, Neveu A 1974 Phys. Rev. D 10 3235Google Scholar

    [75]

    Backens S, Shnirman A, Makhlin Y 2019 Sci. Rep. 9 2

    [76]

    Weinberg P, Bukov M 2017 SciPost Phys. 2 003Google Scholar

    [77]

    Steiger D S, Häner T, Troyer M 2018 Quantum 2 49Google Scholar

    [78]

    Collins J 2013 Foundations of Perturbative QCD (Cambridge: Cambridge University Press) pp174–176

    [79]

    Ishikawa T, Jin L, Lin H W, Schäfer A, Yang Y B, Zhang J H, Zhao Y 2019 Sci. China Phys. Mech. Astron. 62 991021Google Scholar

    [80]

    Jia Y, Liang S, Xiong X, Yu R 2018 Phys. Rev. D 98 054011Google Scholar

    [81]

    Barry P C, Ji C R, Sato N, Melnitchouk W 2021 Phys. Rev. Lett. 127 232001Google Scholar

    [82]

    Chernyak V L, Zhitnitsky A R 1984 Phys. Rep. 112 173Google Scholar

    [83]

    Zhang R, Honkala C, Lin H W, Chen J W 2020 Phys. Rev. D 102 094519

    [84]

    Jordan S P, Lee K S M, Preskill J 2014 Quant. Inf. Comput. 14 1014

    [85]

    Jordan S P, Lee K S M, Preskill J 2014 arXiv: 1404.7115 [High Energy Physics-Theory

    [86]

    Lehmann H, Symanzik H, Zimmerman W 1955 Nuovo Cimento 1 205Google Scholar

    [87]

    Abdalla E, Abdalla M C B, Rothe K D 1991 Non-perturbative Methods in 2D Quantum Field Theory (Singaproe: World Scientific Publishing House

    [88]

    Lowenstein J, Swieca J 1971 Ann. Phys. 68 172Google Scholar

    [89]

    Byrnes T, Sriganesh P, Bursill R, Hamer C 2002 Phys. Rev. D 66 013002Google Scholar

    [90]

    Buyens B, Montangero S, Haegeman J, Verstraete F, Van Acoleyen K 2017 Phys. Rev. D 95 094509

    [91]

    Zinn-Justin J 2002 In New Developments in Quantum Field Theory (Springer), pp217–232

    [92]

    Kogut J, Susskind L 1975 Phys. Rev. D 11 395

    [93]

    Fetter A L, Walecka J D 2012 Quantum Theory of Many-particle Systems (New York: Courier Corporation

    [94]

    Casher A, Kogut J, Susskind L 1974 Phys. Rev. D 10 732Google Scholar

    [95]

    Hamer C, Kogut J, Crewther D, Mazzolini M 1982 Nucl. Phys. B 208 413Google Scholar

    [96]

    Buyens B, Verstraete F, Van Acoleyen K 2016 Phys. Rev. D 94 085018Google Scholar

    [97]

    Johansson J R, Nation P D, Nori F 2012 Comput. Phys. Commun. 183 1760Google Scholar

    [98]

    Pisarski R D, Alvarez O 1982 Phys. Rev. D 26 3735Google Scholar

    [99]

    Fodor Z, Katz S D 2004 J. High Energy Phys. 2004 050

    [100]

    D’ Elia M, Lombardo M P 2003 Phys. Rev. D 67 014505

    [101]

    Allton C R, Ejiri S, Hands S J, Kaczmarek O, Karsch F, Laermann E, Schmidt C 2003 Phys. Rev. D 68 014507

  • [1] 黄天龙, 吴永政, 倪明, 汪士, 叶永金. 量子噪声对Shor算法的影响.  , 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] 周文豪, 王耀, 翁文康, 金贤敏. 集成光量子计算的研究进展.  , 2022, 71(24): 240302. doi: 10.7498/aps.71.20221782
    [3] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [4] 田宇玲, 冯田峰, 周晓祺. 基于冗余图态的多人协作量子计算.  , 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [5] 杨乐, 李凯, 戴宏毅, 张明. 基于量子算法的量子态层析新方案.  , 2019, 68(14): 140301. doi: 10.7498/aps.68.20190157
    [6] 薛希玲, 陈汉武, 刘志昊, 章彬彬. 基于散射量子行走的完全图上结构异常搜索算法.  , 2016, 65(8): 080302. doi: 10.7498/aps.65.080302
    [7] 刘艳梅, 陈汉武, 刘志昊, 薛希玲, 朱皖宁. 星图上的散射量子行走搜索算法.  , 2015, 64(1): 010301. doi: 10.7498/aps.64.010301
    [8] 朱艳菊, 江月松, 张崇辉, 辛灿伟. 应用改进的物理光学法和图形计算电磁学近似算法快速计算导体目标电磁散射特性.  , 2014, 63(16): 164202. doi: 10.7498/aps.63.164202
    [9] 游 泳, 刘义保, 邓玲娜, 李 群. 电子与钠原子散射的S, T, U参数研究.  , 2007, 56(4): 2073-2078. doi: 10.7498/aps.56.2073
    [10] 樊铁栓, 郭之虞, 刘文龙, 叶卫国, 冯玉清, 宋翔翔, 黄 钢, 洪英觉, 刘廷进, 陈金象, 唐国有, 施兆民, 刘 驰, 黄小龙, 陈佳洱. 核物理数据智能化管理和网络共享的研究.  , 2004, 53(9): 2919-2924. doi: 10.7498/aps.53.2919
    [11] 张德兴. 量子条件振幅算子性质的研究.  , 2004, 53(6): 1647-1651. doi: 10.7498/aps.53.1647
    [12] 承焕生, 崔志祥, 徐洪杰, 要小未, 杨福家. Al(100)表面原子结构的高能离子散射研究.  , 1989, 38(12): 1981-1987. doi: 10.7498/aps.38.1981
    [13] 李扬国, 刘宪辉. 高能质子在原子核上散射的自旋打翻效应.  , 1977, 26(2): 180-183. doi: 10.7498/aps.26.180
    [14] 张禹顺, 李扬国. 高能质子与原子核的弹性和非弹性散射.  , 1977, 26(5): 449-454. doi: 10.7498/aps.26.449
    [15] 范海福, 郑启泰. 晶体衍射结构振幅的外推.  , 1975, 24(2): 97-104. doi: 10.7498/aps.24.97
    [16] 鲍诚光. N体散射——(Ⅰ)跃迁振幅的代数结构和积分方程组.  , 1975, 24(3): 215-222. doi: 10.7498/aps.24.215
    [17] 殷鹏程, 葉芃生, 张春霆. 高能散射与αqRegge轨迹.  , 1965, 21(2): 346-354. doi: 10.7498/aps.21.346
    [18] 殷鹏程, 张春霆. 散射振幅的广义Regge表示.  , 1965, 21(12): 2004-2014. doi: 10.7498/aps.21.2004
    [19] 金星南. 高能电子对原子核C12的弹性散射.  , 1959, 15(1): 25-31. doi: 10.7498/aps.15.25
    [20] 金星南. 高能电子对原子核弹性散射的一个近似计算法.  , 1956, 12(5): 447-458. doi: 10.7498/aps.12.447
计量
  • 文章访问数:  2863
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 修回日期:  2023-07-04
  • 上网日期:  2023-07-25
  • 刊出日期:  2023-10-20

/

返回文章
返回
Baidu
map