搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双锥对撞点火实验中的交叉束能量转移与背向受激布里渊散射

高凡 袁鹏 黄浩彬 寇琦 贾青 远晓辉 张喆 张杰 郑坚

引用本文:
Citation:

双锥对撞点火实验中的交叉束能量转移与背向受激布里渊散射

高凡, 袁鹏, 黄浩彬, 寇琦, 贾青, 远晓辉, 张喆, 张杰, 郑坚

Cross beam energy transfer and backward stimulated Brillouin scattering in double-cone ignition experiment

Gao Fan, Yuan Peng, Huang Hao-Bin, Kou Qi, Jia Qing, Yuan Xiao-Hui, Zhang Zhe, Zhang Jie, Zheng Jian
PDF
HTML
导出引用
  • 在直接驱动激光聚变研究中, 激光辐照靶丸会激励起受激布里渊散射(SBS)和交叉束能量传递(CBET)等过程, 降低激光与靶丸的能量耦合效率以及激光辐照均匀性, 导致靶丸内爆品质下降. 本文使用一套基于光纤收集信号的背向散射诊断系统, 诊断了双锥对撞点火(DCI)实验中波长在351 nm附近的时间分辨背向散射光谱. 通过对比不同激光辐照条件下散射光谱的特征, 结合光谱强度与入射激光能量以及激光偏振态的相关性分析, 确认背向散射信号中包含了分别来自CBET和背向SBS过程的散射成分, 确认镜像激光束之间的偏振夹角对CBET的影响. 实验结果表明, 在当前DCI实验中, 在351 nm附近的背向反射率不高于3%, 显著低于球对称辐照直接驱动中心点火方案的实验结果.
    In the research of direct-drive laser fusion, laser irradiation of a target pellet can stimulate various laser plasma instabilities, such as stimulated Brillouin scattering (SBS) and cross-beam energy transfer (CBET), which significantly reduce the energy coupling efficiency between the laser and target pellet as well as the laser irradiation uniformity, leading the implosion quality to degrade. In the double-cone ignition (DCI) scheme of laser fusion scheme, the diagnosis of SBS and CBET is important owing to the different target configurations and oblique incident laser irradiation from the traditional spherically symmetric direct-drive central ignition scheme. In this paper, a simple and reliable backscattering diagnostic system is developed and applied to the diagnosis of the time-resolved backscattering spectrum at wavelength near 351 nm in a DCI experiment on the Shenguang-II upgrade (SG-IIU) facility. We use the system to carry out an experimental study of the SBS process and CBET process in DCI.The backscattering diagnostic system collects the backscattered light signal through the scattered light by reflector mirror via an optical fiber. The signal is dispersed by a spectrometer and then recorded by a streak camera. The signal contains both the laser reference signal from the frequency doubling crystal and the backscattered light. With the help of the reference signal, the diagnostic system can reliably give the energy fraction of backscattered light. The experimental results show that the energy fraction of backscattered light around 351 nm is not higher than 3%, which is significantly lower than the experimental result of the spherically symmetric irradiation direct-drive central ignition scheme.By analyzing the correlation between the backscattered signal and the laser irradiation conditions and combining the results of a set of comparative experiments, we determine that the backscattered signal contains both CBET and SBS. There is a significant difference in the CBET fraction between the backscattered signal of the #5 laser and the backscattered signal of the #7 laser. By combining the polarisation state of the laser beams, we confirm that this phenomenon is related to the polarisation angle between the laser beams. This finding provides a reference for designing subsequent large-scale laser fusion devices.
      通信作者: 袁鹏, yuanpeng@ustc.edu.cn
    • 基金项目: 中国科学院战略性先导科技专项(A类)(批准号: XDA25010200)资助的课题.
      Corresponding author: Yuan Peng, yuanpeng@ustc.edu.cn
    • Funds: Project supported by the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA25010200).
    [1]

    Nuckolls J, Wood L, Thiessen A, et al. 1972 Nature 239 139Google Scholar

    [2]

    McCrory R L, Regan S P, Loucks S J, et al. 2005 Nucl. Fusion 45 S283Google Scholar

    [3]

    Lindl J 1995 Phys. Plasmas 2 3933

    [4]

    Craxton R S, Anderson K S, Boehly T R, et al. 2015 Phys. Plasmas 22 110501Google Scholar

    [5]

    He X T, Li J W, Fan Z F, Wang L F, Liu J, Lan K, Wu J F, Ye W H 2016 Phys. Plasmas 23 82706Google Scholar

    [6]

    Molvig K, Schmitt M J, Albright B J, et al. 2016 Phys. Rev. Lett. 116 255003Google Scholar

    [7]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001Google Scholar

    [8]

    Clery D 2022 science. adg 378 1154

    [9]

    Zhang J, Wang W M, Yang X H, et al. 2020 Philos. Trans. A Math. Phys. Eng. Sci. 378 20200015

    [10]

    Kruer W L 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley Publishing Company) p88

    [11]

    Kirkwood R K, Moody J D, Kline J, et al. 2013 Plasma Phys. Control. Fusion 55 103001Google Scholar

    [12]

    Qiu J, Hao L, Cao L, Zou S 2021 Matter Radiat. at Extremes 6 65903Google Scholar

    [13]

    Neuville C, Tassin V, Pesme D, et al. 2016 Phys. Rev. Lett. 116 235002Google Scholar

    [14]

    Kritcher A L, Zylstra A B, Callahan D A, et al. 2022 Phys. Rev. E 106 25201Google Scholar

    [15]

    Froula D H, Igumenshchev I V, et al. 2012 Phys. Rev. Lett. 108 125003Google Scholar

    [16]

    Williams E A, Cohen B I, Divol L, et al. 2004 Phys. Plasmas 11 231Google Scholar

    [17]

    Turnbull D, Colaïtis A, Follett R K, et al. 2018 Plasma Phys. Control. Fusion 60 54017Google Scholar

    [18]

    Michel P, Rozmus W, Williams E A, Divol L, Berger R L, Glenzer S H, Callahan D A 2013 Phys. Plasmas 20 56308Google Scholar

    [19]

    Randall C J, Thomson J J, Estabrook K G 1979 Phys. Rev. Lett. 43 924Google Scholar

    [20]

    Kirkwood R K, Michel P, London R, et al. 2011 Phys. Plasmas 18 56311Google Scholar

    [21]

    Seka W, Edgell D H, Knauer J P, et al. 2008 Phys. Plasmas 15 56312Google Scholar

    [22]

    Igumenshchev I V, Edgell D H, Goncharov V N, et al. 2010 Phys. Plasmas 17 122708Google Scholar

    [23]

    Igumenshchev I V, Seka W, Edgell D H, et al. 2012 Phys. Plasmas 19 56314Google Scholar

    [24]

    Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55Google Scholar

    [25]

    张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰 2022 71 155201Google Scholar

    Zhang Z, Yuan X H, Zhang Y H, Liu H, Fang K, Zhang C L, Liu Z D, Zhao X, Dong Q L, Liu G Y, Dai Y, Gu H C, Li Y T, Zheng J, Zhong J Y, Zhang J 2022 Acta Phys. Sin. 71 155201Google Scholar

    [26]

    乔战峰, 卢兴强, 赵东峰, 朱宝强 2008 中国激光 9 1328Google Scholar

    Qiao Z F, Lu X Q, Zhao D F, Zhu B Q 2008 Chin. J. Lasers 9 1328Google Scholar

    [27]

    赵闯, 袁鹏, 李欣焱, 郑坚, DCI 联合研究团队 2023 光学学报 43 1114001

    Zhao C, Yuan P, Li X Y, DCI Joint Research Team 2023 Acta Opt. Sin. 43 1114001

    [28]

    龚韬 2015 博士学位论文 (合肥: 中国科学技术大学)

    Gong T 2005 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • 图 1  神光Ⅱ升级激光打靶辐照示意 (a) 激光辐照俯视图; (b) 激光辐照侧视图

    Fig. 1.  Schematic diagram of Shenguang IIU laser irradiation configuration: (a) Top view of laser irradiation; (b) side view of laser irradiation.

    图 2  激光偏振示意图 (a) 上四路激光偏振示意图; (b) 沿激光传输方向偏振示意

    Fig. 2.  Laser polarization diagram: (a) Diagram of the polarisation of the upper four lasers; (b) diagram of the polarisation along the direction of laser transmission.

    图 3  背向散射诊断示意 (a) 激光光路光学元件组成与诊断设备; (b) 诊断系统典型结果

    Fig. 3.  Schematic diagram of backscatter diagnosis: (a) Composition and diagnosis equipment of optical elements of laser optical path; (b) typical results of diagnostic system.

    图 4  典型背向时间分辨散射光谱与激光波形 (红色曲线)

    Fig. 4.  Typical time-resolved backscattering spectrum and laser waveform (red line).

    图 5  对比实验的背向散射光谱

    Fig. 5.  The results of the experiments with different laser conditions.

    图 6  SBS能量与各路激光能量关系 (a)与#1路激光能量的关系; (b)与#1+#3路激光能量之和的关系

    Fig. 6.  Relation between SBS energy and laser energy: (a) Relationship with #1 way laser energy; (b) relationship with the sum of #1+ #3 way laser energy.

    图 7  #5, #7路三倍频波段背向散射统计 (a) 三倍频波段背向散射总份额; (b) CBET份额与SBS份额

    Fig. 7.  Statistics of #5 and #7 Channels: (a) Total triplet-band backscattered energy fraction; (b) CBET and SBS energy fraction.

    表 1  #5, #7 路激光偏振情况

    Table 1.  #5, # 7 laser beam polarization.

    诊断窗口靶型激光
    入射角/(°)
    偏振方向
    与入射面
    夹角/(°)
    与靶面法向
    夹角/(°)
    与镜像光束
    偏振夹角/(°)
    反射光与镜像光束
    偏振夹角/(°)
    #5背散
    (#3镜面反射方向)
    双锥靶507.540.681.215
    #7背散
    (#1镜面反射方向)
    双锥靶502345.289.746
    下载: 导出CSV
    Baidu
  • [1]

    Nuckolls J, Wood L, Thiessen A, et al. 1972 Nature 239 139Google Scholar

    [2]

    McCrory R L, Regan S P, Loucks S J, et al. 2005 Nucl. Fusion 45 S283Google Scholar

    [3]

    Lindl J 1995 Phys. Plasmas 2 3933

    [4]

    Craxton R S, Anderson K S, Boehly T R, et al. 2015 Phys. Plasmas 22 110501Google Scholar

    [5]

    He X T, Li J W, Fan Z F, Wang L F, Liu J, Lan K, Wu J F, Ye W H 2016 Phys. Plasmas 23 82706Google Scholar

    [6]

    Molvig K, Schmitt M J, Albright B J, et al. 2016 Phys. Rev. Lett. 116 255003Google Scholar

    [7]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001Google Scholar

    [8]

    Clery D 2022 science. adg 378 1154

    [9]

    Zhang J, Wang W M, Yang X H, et al. 2020 Philos. Trans. A Math. Phys. Eng. Sci. 378 20200015

    [10]

    Kruer W L 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley Publishing Company) p88

    [11]

    Kirkwood R K, Moody J D, Kline J, et al. 2013 Plasma Phys. Control. Fusion 55 103001Google Scholar

    [12]

    Qiu J, Hao L, Cao L, Zou S 2021 Matter Radiat. at Extremes 6 65903Google Scholar

    [13]

    Neuville C, Tassin V, Pesme D, et al. 2016 Phys. Rev. Lett. 116 235002Google Scholar

    [14]

    Kritcher A L, Zylstra A B, Callahan D A, et al. 2022 Phys. Rev. E 106 25201Google Scholar

    [15]

    Froula D H, Igumenshchev I V, et al. 2012 Phys. Rev. Lett. 108 125003Google Scholar

    [16]

    Williams E A, Cohen B I, Divol L, et al. 2004 Phys. Plasmas 11 231Google Scholar

    [17]

    Turnbull D, Colaïtis A, Follett R K, et al. 2018 Plasma Phys. Control. Fusion 60 54017Google Scholar

    [18]

    Michel P, Rozmus W, Williams E A, Divol L, Berger R L, Glenzer S H, Callahan D A 2013 Phys. Plasmas 20 56308Google Scholar

    [19]

    Randall C J, Thomson J J, Estabrook K G 1979 Phys. Rev. Lett. 43 924Google Scholar

    [20]

    Kirkwood R K, Michel P, London R, et al. 2011 Phys. Plasmas 18 56311Google Scholar

    [21]

    Seka W, Edgell D H, Knauer J P, et al. 2008 Phys. Plasmas 15 56312Google Scholar

    [22]

    Igumenshchev I V, Edgell D H, Goncharov V N, et al. 2010 Phys. Plasmas 17 122708Google Scholar

    [23]

    Igumenshchev I V, Seka W, Edgell D H, et al. 2012 Phys. Plasmas 19 56314Google Scholar

    [24]

    Zhu J Q, Zhu J, Li X C, et al. 2018 High Power Laser Sci. Eng. 6 e55Google Scholar

    [25]

    张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰 2022 71 155201Google Scholar

    Zhang Z, Yuan X H, Zhang Y H, Liu H, Fang K, Zhang C L, Liu Z D, Zhao X, Dong Q L, Liu G Y, Dai Y, Gu H C, Li Y T, Zheng J, Zhong J Y, Zhang J 2022 Acta Phys. Sin. 71 155201Google Scholar

    [26]

    乔战峰, 卢兴强, 赵东峰, 朱宝强 2008 中国激光 9 1328Google Scholar

    Qiao Z F, Lu X Q, Zhao D F, Zhu B Q 2008 Chin. J. Lasers 9 1328Google Scholar

    [27]

    赵闯, 袁鹏, 李欣焱, 郑坚, DCI 联合研究团队 2023 光学学报 43 1114001

    Zhao C, Yuan P, Li X Y, DCI Joint Research Team 2023 Acta Opt. Sin. 43 1114001

    [28]

    龚韬 2015 博士学位论文 (合肥: 中国科学技术大学)

    Gong T 2005 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • [1] 张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰. 超音速高密度喷流对撞过程中的高效能量转移.  , 2022, 71(15): 155201. doi: 10.7498/aps.71.20220361
    [2] 王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵. 皮秒激光驱动下的背向受激布里渊散射的光谱结构.  , 2021, 70(19): 195202. doi: 10.7498/aps.70.20210568
    [3] 许锦, 郭洋宁, 罗宁宁, 李淑静, 史久林, 何兴道. 水体参数对受激布里渊散射阈值及增益的影响.  , 2021, 70(15): 154205. doi: 10.7498/aps.70.20210326
    [4] 史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道. 水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制.  , 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [5] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响.  , 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [6] 哈斯乌力吉, 王雪阳, 郭翔宇, 仲召明, 范瑞清, 林殿阳, 何伟明, 吕志伟. 杂质颗粒对受激布里渊散射介质光学击穿阈值影响的研究.  , 2012, 61(14): 144207. doi: 10.7498/aps.61.144207
    [7] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于受激布里渊散射能量转移的冲击点火激光技术研究.  , 2012, 61(11): 114207. doi: 10.7498/aps.61.114207
    [8] 耿西钊, 哈斯乌力吉, 郭翔宇, 李杏, 林殿阳, 何伟明, 范瑞清, 吕志伟. 利用受激布里渊散射能量反射率测量液体介质运动黏度方法的研究.  , 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [9] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响.  , 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [10] 陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾. 同轴正交偏振双脉冲序列受激布里渊散射抽运放大的实现方法.  , 2010, 59(2): 1047-1051. doi: 10.7498/aps.59.1047
    [11] 王士鹤, 任立勇, 刘宇. 光纤中基于双宽带抽运的受激布里渊散射增益谱展宽及慢光传输中脉冲失真减小的理论研究.  , 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [12] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响.  , 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [13] 哈斯乌力吉, 吕志伟, 李 强, 巴德欣, 何伟明. 选用新介质的双池受激布里渊散射系统的研究.  , 2007, 56(3): 1385-1389. doi: 10.7498/aps.56.1385
    [14] 王雨雷, 吕志伟, 何伟明, 张 祎. 一种大能量受激布里渊散射相位共轭镜的研究.  , 2007, 56(2): 883-888. doi: 10.7498/aps.56.883
    [15] 龚华平, 吕志伟, 林殿阳, 吕月兰. 透镜焦距对受激布里渊散射光限幅特性的影响.  , 2006, 55(6): 2735-2739. doi: 10.7498/aps.55.2735
    [16] 邓少永, 郭少锋, 陆启生, 程湘爱. 抽运光参数对受激布里渊散射的影响.  , 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [17] 哈斯乌力吉, 吕志伟, 何伟明, 李 强, 巴德欣. 光学击穿对受激布里渊散射特性的影响.  , 2005, 54(12): 5654-5658. doi: 10.7498/aps.54.5654
    [18] 何伟明, 杨 珺, 吕月兰, 吕志伟. 种子场对单池受激布里渊散射脉冲波形保真的影响.  , 2004, 53(2): 468-472. doi: 10.7498/aps.53.468
    [19] 彭忠林, 朱少平. 碰撞对受激Raman散射的影响.  , 2003, 52(10): 2500-2507. doi: 10.7498/aps.52.2500
    [20] 沈文达, 朱莳通. 库仑相互作用对相对论性电子束受激散射的影响.  , 1982, 31(2): 234-236. doi: 10.7498/aps.31.234
计量
  • 文章访问数:  3099
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 修回日期:  2023-06-06
  • 上网日期:  2023-07-06
  • 刊出日期:  2023-09-05

/

返回文章
返回
Baidu
map