搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲占空比对磁性微泡介导的聚焦超声温升效应的影响

张玫玫 吴意赟 于洁 屠娟 章东

引用本文:
Citation:

脉冲占空比对磁性微泡介导的聚焦超声温升效应的影响

张玫玫, 吴意赟, 于洁, 屠娟, 章东

Effect of pulse duty ratio on temperature rise induced by focused ultrasound combined with magnetic microbubbles

Zhang Mei-Mei, Wu Yi-Yun, Yu Jie, Tu Juan, Zhang Dong
PDF
HTML
导出引用
  • 集合多种诊断和治疗功能的声/磁造影剂微泡的研究与开发已经成为当前医学超声、生物医学工程及临床应用领域共同关注的热点问题. 超顺磁氧化铁纳米颗粒具有独特的磁性特征和良好的生物相容性, 可被用作核磁共振造影剂来提升影像对比度、空间分辨率及临床诊断准确性. 我们的前期工作表明, 通过将超顺磁氧化铁纳米颗粒挂载于常规超声造影剂微泡表面, 可以成功构建多模态诊断及治疗介质, 显著改变超声造影剂微泡的尺度分布及包膜粘弹系数等物理特性, 进而影响微泡造影剂的声散射特性及其声空化效应和热效应. 然而, 此前的研究仅考虑了声场强度和微泡浓度等影响因素, 对于脉冲超声时间特性对磁性微泡造影剂动力学响应的影响的相关研究仍有所欠缺. 本文通过热电偶对凝胶仿体血管模型中流动的双模态磁性微泡在不同占空比超声脉冲信号作用下, 产生温升效应开展了系统的实验测量, 并基于有限元模型对实验结果进行了仿真验证. 结果显示, 脉冲信号占空比的提升是增强血管中磁性微泡在聚焦超声作用下温升效果的关键性时间影响因素. 本文的研究成果将有助于更好地理解不同超声作用参数对双模态磁性微泡的热效应的影响机制, 对保障双模态磁性微泡在临床热疗应用中的安全性和有效性具有重要的指导意义.
    Development of acoustic/magnetic contrast agent microbubbles with various diagnostic and therapeutic functions has attracted more and more attention in medical ultrasound, biomedical engineering and clinical applications. Superparamagnetic iron oxide nanoparticles (SPIO) have unique magnetic characteristics and wonderful biocompatibility, so they can be used as MRI contrast agents to improve image contrast, spatial resolution and diagnostic accuracy. Our previous work shows that the multimodal diagnostic and therapeutic microbubble agents can be successfully constructed by embedding SPIO particles into the coating shell of conventional ultrasound contrast agent (UCA) microbubbles, which in turn changes the size distribution and shell properties of UCA microbubbles, thereby affecting their acoustic scattering, cavitation and thermal effects. However, previous studies only considered the influence factors such as acoustic pressure and microbubble concentration. The relevant investigation regarding the influence of ultrasound temporal characteristics on the dynamic response of magnetic microbubbles is still lacking. This work systematically measures the temperature enhancement effect of the SPIO-albumin microbubble solution flowing in the vascular gel phantom exposed to pulsed ultrasound with various temporal settings (e.g. duty cycle, PRF and single pulse length). Meanwhile, a two-dimensional finite element model is developed to simulate and verify the experimental observations. The results show that the increase of duty cycle of pulse signal should be the crucial factor affecting the temperature enhancement effect of flowing SPIO-albumin microbubble solution under the exposure to high-intensity focused ultrasound. The current results help us to better understand the influence of different acoustic setting parameters on the thermal effect of dual-modal magnetic UCA microbubbles, and provide useful guidance for ensuring the safety and effectiveness of the application of SPIO-albumin microbubbles in clinics.
      通信作者: 章东, dzhang@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12227808, 12274220, 52100014, 11874216, 11934009, 11911530173)、声场声信息国家重点实验室开放课题(批准号: SKLA202212, SKLA202107)和南通南京大学材料工程技术研究院基础科学研究计划(批准号: JCA41-01)资助的课题.
      Corresponding author: Zhang Dong, dzhang@nju.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 12227808, 12274220, 52100014, 11874216, 11934009, 11911530173), the Open Project of the State Key Laboratory of Sound Field Information, China (Grant Nos. SKLA202212, SKLA202107), and the Basic Science Research Plan of the Institute of Materials Engineering and Technology of Nantong Nanjing University, China (Grant No. JCA41-01).
    [1]

    于洁, 郭霞生, 屠娟, 章东 2015 64 094306Google Scholar

    Yu J, Guo X S, Tu J, Zhang D 2015 Acta Phys. Sin. 64 094306Google Scholar

    [2]

    Wang H L, Thorling C A, Liang X W, Bridle K R, Grice J E, Zhu Y A, Crawford D H G, Xu Z P, Liu X, Roberts M S 2015 J. Mater. Chem. B 3 939Google Scholar

    [3]

    Niu C C, Wang Z G, Lu G M, Krupka T M, Sun Y, You Y F, Song W X, Ran H T, Li P, Zheng Y Y 2013 Biomaterials 34 2307Google Scholar

    [4]

    Shin T H, Choi Y, Kim S, Cheon J 2015 Chem. Soc. Rev. 44 4501Google Scholar

    [5]

    Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q X, Yue Y B, Gu N 2020 Theranostics 10 462Google Scholar

    [6]

    Guo G P, Lu L, Yin L L, Tu J, Guo X S, Wu J, Xu D, Zhang D 2014 Phys. Med. Biol. 59 6729Google Scholar

    [7]

    赵丽霞, 王成会, 莫润阳 2021 70 014301Google Scholar

    Zhao L X, Wang C H, Mo R Y 2021 Acta Phys. Sin. 70 014301Google Scholar

    [8]

    Tu J, Yu ACH 2022 BME Frontiers 2022 9807347

    [9]

    Yang Y Y, Li Q, Guo X S, Tu J, Zhang D 2020 Ultrason. Sonochem. 67 105096Google Scholar

    [10]

    Gu Y Y, Chen C Y, Tu J, Guo X S, Wu H Y, Zhang D 2016 Ultrason. Sonochem. 29 309Google Scholar

    [11]

    郭各朴, 张春兵, 屠娟, 章东 2015 64 114301Google Scholar

    Guo G P, Zhang C B, Tu J, Zhang D 2015 Acta Phys. Sin. 64 114301Google Scholar

    [12]

    Guo G P, Tu J, Guo X S, Huang P T, Wu J, Zhang D 2016 J. Biomech. 49 319Google Scholar

    [13]

    Illing R O, Kennedy J E, Wu F, ter Haar G R, Protheroe A S, Friend P J, Gleeson F V, Cranston D W, Phillips R R, Middleton M R 2005 Br. J. Cancer 93 890Google Scholar

    [14]

    Poissonnier L, Chapelon J Y, Rouvière O, Curiel L, Bouvier R, Martin X, Dubernard J M, Gelet A 2007 Eur. Urol. 51 381Google Scholar

    [15]

    Hectors S J, Jacobs I, Heijman E, Keupp J, Berben M, Strijkers G J, Grüll H, Nicolay K 2015 NMR Biomed. 28 1125Google Scholar

    [16]

    Kennedy J E 2005 Nat. Rev. Cancer 5 321Google Scholar

    [17]

    Zhang L, Zhu H, Jin C B, Zhou K, Li K Q, Su H B, Chen W Z, Bai J, Wang Z B 2009 Eur. Radiol. 19 437Google Scholar

    [18]

    Sboros V 2008 Adv. Drug Delivery Rev. 60 1117Google Scholar

    [19]

    Kaneko Y, Maruyama T, Takegami K, Watanabe T, Mitsui H, Hanajiri K, Nagawa H, Matsumoto Y 2005 Eur. Radiol. 15 1415Google Scholar

    [20]

    Zhang S Y, Ding T, Wan M X, Jiang H J, Yang X, Zhong H, Wang S P 20 11 J. Acoust. Soc. Am. 129 2336

    [21]

    Yang D X, Ni Z Y, Yang Y Y, Xu G Y, Tu J, Guo X S, Huang P T, Zhang D 2018 Ultrason. Sonochem. 49 111Google Scholar

    [22]

    Lee Y S, Hmilton M F 1995 J. Acoust. Soc. Am. 97 906Google Scholar

    [23]

    Pennes H H 1948 J. Appl. Physiol. 1 93Google Scholar

    [24]

    Qian K, Li C H, Ni Z Y, Tu J, Guo X S, Zhang D 2017 Ultrasonics 77 38Google Scholar

    [25]

    Tu J, Hwang J H, Fan T B, Guo X S, Crum L A, Zhang D 2012 Appl. Phys. Lett. 101 124102Google Scholar

    [26]

    Holt R G, Roy R A 2001 Ultra. Med. Biol. 27 1399Google Scholar

    [27]

    Coussios C C, Farny C H, Haar G T, Roy R A 2007 Int. J. Hyperthermia 23 105Google Scholar

    [28]

    Razansky D, Einziger P D, Adam D R 2006 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 137Google Scholar

  • 图 1  数值模拟仿真几何模型设计示意图

    Fig. 1.  Schematic diagram of geometric model design for numerical simulation.

    图 2  超声脉冲信号时序示意图

    Fig. 2.  Schematic diagram of ultrasonic pulse signal timing.

    图 3  磁性微泡制备示意图

    Fig. 3.  Schematic diagram of magnetic microbubble preparation.

    图 4  实验装置示意图(凝胶中红色点表示测温针针尖位置, 垂直于纸面); 换能器焦点位于凝胶中聚酯管内, 测温针放置在管壁边缘

    Fig. 4.  Schematic diagram of the experimental device (the red dot in the gel indicates the position of the tip of the temperature probe, which is perpendicular to the paper). The transducer focus is located in the polyester tube in the gel, and the temperature probe is placed on the edge of the tube wall.

    图 5  蛋白包膜微泡(a)和双模态磁性微泡(b)的透射电子显微镜图像

    Fig. 5.  Transmission electron microscope images of protein coated microbubbles (a) and bimodal magnetic microbubbles (b).

    图 6  不同占空比条件下, 模拟血管中磁性微泡溶液在聚焦超声作用下的温度随时间变化情况(a)及最高温升情况(b). *表示p < 0.5

    Fig. 6.  Temperature change with time of magnetic microbubble solution in simulated blood vessels under the action of focused ultrasound under different duty cycles (a) and maximum temperature rise (b). * means p < 0.5

    图 7  占空比保持不变时, 模拟血管中磁性微泡溶液在聚焦超声作用下的温度随时间变化情况(a)及最高温升情况(b)

    Fig. 7.  Temperature changes with time (a) and maximum temperature rise (b) of magnetic microbubble solution in simulated blood vessels under the action of HIFU when the duty cycle remains unchanged.

    表 1  模拟仿真计算中各区域材料参数设定

    Table 1.  Material parameter setting of each area in simulation calculation.

    材料凝胶磁性微泡溶液
    密度/(kg·m–3)100010431006
    声速/(m·s–1)148615421550
    声衰减系数/(dB·cm–1)0.00220.19981.0000
    比热容/(J·kg–1·K–1)45003580
    导热系数/(W·m–1·K–1)0.60.5
    下载: 导出CSV
    Baidu
  • [1]

    于洁, 郭霞生, 屠娟, 章东 2015 64 094306Google Scholar

    Yu J, Guo X S, Tu J, Zhang D 2015 Acta Phys. Sin. 64 094306Google Scholar

    [2]

    Wang H L, Thorling C A, Liang X W, Bridle K R, Grice J E, Zhu Y A, Crawford D H G, Xu Z P, Liu X, Roberts M S 2015 J. Mater. Chem. B 3 939Google Scholar

    [3]

    Niu C C, Wang Z G, Lu G M, Krupka T M, Sun Y, You Y F, Song W X, Ran H T, Li P, Zheng Y Y 2013 Biomaterials 34 2307Google Scholar

    [4]

    Shin T H, Choi Y, Kim S, Cheon J 2015 Chem. Soc. Rev. 44 4501Google Scholar

    [5]

    Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q X, Yue Y B, Gu N 2020 Theranostics 10 462Google Scholar

    [6]

    Guo G P, Lu L, Yin L L, Tu J, Guo X S, Wu J, Xu D, Zhang D 2014 Phys. Med. Biol. 59 6729Google Scholar

    [7]

    赵丽霞, 王成会, 莫润阳 2021 70 014301Google Scholar

    Zhao L X, Wang C H, Mo R Y 2021 Acta Phys. Sin. 70 014301Google Scholar

    [8]

    Tu J, Yu ACH 2022 BME Frontiers 2022 9807347

    [9]

    Yang Y Y, Li Q, Guo X S, Tu J, Zhang D 2020 Ultrason. Sonochem. 67 105096Google Scholar

    [10]

    Gu Y Y, Chen C Y, Tu J, Guo X S, Wu H Y, Zhang D 2016 Ultrason. Sonochem. 29 309Google Scholar

    [11]

    郭各朴, 张春兵, 屠娟, 章东 2015 64 114301Google Scholar

    Guo G P, Zhang C B, Tu J, Zhang D 2015 Acta Phys. Sin. 64 114301Google Scholar

    [12]

    Guo G P, Tu J, Guo X S, Huang P T, Wu J, Zhang D 2016 J. Biomech. 49 319Google Scholar

    [13]

    Illing R O, Kennedy J E, Wu F, ter Haar G R, Protheroe A S, Friend P J, Gleeson F V, Cranston D W, Phillips R R, Middleton M R 2005 Br. J. Cancer 93 890Google Scholar

    [14]

    Poissonnier L, Chapelon J Y, Rouvière O, Curiel L, Bouvier R, Martin X, Dubernard J M, Gelet A 2007 Eur. Urol. 51 381Google Scholar

    [15]

    Hectors S J, Jacobs I, Heijman E, Keupp J, Berben M, Strijkers G J, Grüll H, Nicolay K 2015 NMR Biomed. 28 1125Google Scholar

    [16]

    Kennedy J E 2005 Nat. Rev. Cancer 5 321Google Scholar

    [17]

    Zhang L, Zhu H, Jin C B, Zhou K, Li K Q, Su H B, Chen W Z, Bai J, Wang Z B 2009 Eur. Radiol. 19 437Google Scholar

    [18]

    Sboros V 2008 Adv. Drug Delivery Rev. 60 1117Google Scholar

    [19]

    Kaneko Y, Maruyama T, Takegami K, Watanabe T, Mitsui H, Hanajiri K, Nagawa H, Matsumoto Y 2005 Eur. Radiol. 15 1415Google Scholar

    [20]

    Zhang S Y, Ding T, Wan M X, Jiang H J, Yang X, Zhong H, Wang S P 20 11 J. Acoust. Soc. Am. 129 2336

    [21]

    Yang D X, Ni Z Y, Yang Y Y, Xu G Y, Tu J, Guo X S, Huang P T, Zhang D 2018 Ultrason. Sonochem. 49 111Google Scholar

    [22]

    Lee Y S, Hmilton M F 1995 J. Acoust. Soc. Am. 97 906Google Scholar

    [23]

    Pennes H H 1948 J. Appl. Physiol. 1 93Google Scholar

    [24]

    Qian K, Li C H, Ni Z Y, Tu J, Guo X S, Zhang D 2017 Ultrasonics 77 38Google Scholar

    [25]

    Tu J, Hwang J H, Fan T B, Guo X S, Crum L A, Zhang D 2012 Appl. Phys. Lett. 101 124102Google Scholar

    [26]

    Holt R G, Roy R A 2001 Ultra. Med. Biol. 27 1399Google Scholar

    [27]

    Coussios C C, Farny C H, Haar G T, Roy R A 2007 Int. J. Hyperthermia 23 105Google Scholar

    [28]

    Razansky D, Einziger P D, Adam D R 2006 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 137Google Scholar

  • [1] 高铭萱, 张洋, 张军. 双级PIN限幅器的微波脉冲响应机理及规律.  , 2024, 73(6): 068401. doi: 10.7498/aps.73.20231495
    [2] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构.  , 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [3] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用.  , 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [4] 彭晓昱, 周欢. 太赫兹波生物效应.  , 2022, (): . doi: 10.7498/aps.71.20211996
    [5] 彭晓昱, 周欢. 太赫兹波生物效应.  , 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [6] 陈桂波, 张佳佳, 王超群, 毕娟. 一种基于激光辐照热效应的薄膜参数反演方法.  , 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [7] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究.  , 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [8] 胡淼, 张慧, 张飞, 刘晨曦, 徐国蕊, 邓晶, 黄前锋. 用于光生毫米波的双频微片激光器热致频差特性研究.  , 2013, 62(20): 204205. doi: 10.7498/aps.62.204205
    [9] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析.  , 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [10] 刘海强, 过振, 王石语, 林林, 郭龙成, 李兵斌, 蔡德芳. 二极管端面抽运固体激光器晶体棒与热沉接触热导研究.  , 2011, 60(1): 014212. doi: 10.7498/aps.60.014212
    [11] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析.  , 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [12] 王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云. 等离子体气动激励控制激波的机理研究.  , 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [13] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应.  , 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [14] 董浩, 任敏, 张磊, 邓宁, 陈培毅. 电流驱动磁化翻转中的热效应.  , 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [15] 唐元广, 吴汉华, 常鸿, 陈根余, 桑勇, 白亦真. 阴极电压脉冲占空比对钛合金微弧氧化膜特性的影响.  , 2009, 58(7): 4840-4845. doi: 10.7498/aps.58.4840
    [16] 王栋栋, 陈云琳, 李 兵, 颜采繁, 许京军, 张光寅. 利用光衍射效应探测周期极化微结构晶体.  , 2007, 56(12): 7153-7157. doi: 10.7498/aps.56.7153
    [17] 王立世, 潘春旭, 蔡启舟, 魏伯康. 等离子体电解氧化过程中单个稳态微放电的热效应研究.  , 2007, 56(9): 5341-5346. doi: 10.7498/aps.56.5341
    [18] 吴 坚. AlInGaAs垂直谐振腔顶面发射半导体激光器横向温度效应的解析热模型及其表征.  , 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [19] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响.  , 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [20] 钱盛友, 王鸿樟. 聚焦超声源对生物媒质加热的理论研究.  , 2001, 50(3): 501-506. doi: 10.7498/aps.50.501
计量
  • 文章访问数:  3696
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-13
  • 修回日期:  2023-02-01
  • 上网日期:  2023-02-11
  • 刊出日期:  2023-04-20

/

返回文章
返回
Baidu
map