-
设计任意调控极化的电磁器件是一个研究热点, 其中多功能可重构电磁器件在雷达、卫星通信等领域有着广泛的应用. 本文设计了一种基于正本征负极(PIN)二极管可调谐的多功能可重构极化转换超表面, 可以实现不同频段内的线极化波转换、线极化波-圆极化波转换和全反射功能的切换, 在斜入射角小于30°时, 多功能转换器能保持高效的宽带极化转换特性. 这种转换和重构特性主要是由于结构本身的各向异性和PIN管不同状态时耦合模式的改变. 此外, 利用表面电流解释了偏振转换的物理机理, 电谐振和磁谐振的共同作用导致了偏振转换. 最后, 对该结构样品进行实验验证, 其结果与仿真吻合较好. 该器件在极化调控、频率控制、智能反射面设计和天线设计等方面具有潜在的应用价值.The design of electromagnetic device with arbitrary polarization manipulation is the hot spot of the current research. Multifunctional reconfigurable electromagnetic devices have been put into wide applications in radar, satellite communication and other fields. In this work designed is a multifunctional reconfigurable polarization conversion metasurface based on two PIN diodes, which can realize linear polarization conversion, linear-circular polarization conversion and total reflection switching in the different frequency bands, and the multi-function converter can still maintain the high-efficient broadband conversion characteristics when the oblique incidence angle is less than 30 degrees. The polarization conversion and reconfigurability are mainly due to the anisotropy of the structure and the changes of coupling mode in different states of PIN diodes. In addition, the physical mechanism of polarization conversion is explained by surface current. The combined action of electric resonance and magnetic resonance results in polarization conversion. Finally, the experimental results of the sample are in good agreement with the simulation results. The device has the potential application values in polarization manipulation, frequency control, intelligent reflecting surface design, and antenna design and so on.
-
Keywords:
- metasurface /
- reconfigurability /
- polarization conversion /
- PIN diodes
[1] Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar
[2] Huang X J, Yang H L, Zhang D H, Luo Y 2019 IEEE Trans. Antennas Propag. 67 4636Google Scholar
[3] Li Y, Cao Q, Wang Y 2018 IEEE Antennas Wirel. Propag. Lett. 17 1314Google Scholar
[4] Nama L, Nilotpal, Bhattacharyya S, Jain P K 2021 IEEE Antennas Propag. Mag. 63 100Google Scholar
[5] Zheng Q, Guo C, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar
[6] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明, 徐进, 李荣强, 蒋小平, 王身云, 韩天成 2021 70 027803Google Scholar
Li H P, Wu X, Ding H Y, Xin K W, Wang G M, Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2021 Acta Phys. Sin. 70 027803Google Scholar
[7] 徐进, 李荣强, 蒋小平, 王身云, 韩天成 2019 68 117081Google Scholar
Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2019 Acta Phys. Sin. 68 117081Google Scholar
[8] Li Y, Lin J, Guo H, Sun W, Xiao S, Zhou L 2020 Adv. Opt. Mater. 8 1901548Google Scholar
[9] Shen Z Y, Huang X J, Yang H L, Xiang T Y, Wang C W, Yu Z T, Wu J 2018 J. Appl. Phys. 123 225106Google Scholar
[10] Negm A, Bakr M, Howlader M, Ali S 2021 Smart Mater. Struct. 30 075011Google Scholar
[11] 高喜, 唐李光 2021 70 038101Google Scholar
Gao X, Tang L G 2021 Acta Phys. Sin. 70 038101Google Scholar
[12] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓 2021 70 188701Google Scholar
Li G Q, Shi H N, Liu K, Li B L, Yi J J, Zhang A X, Xu Z 2021 Acta Phys. Sin. 70 188701Google Scholar
[13] 李小兵, 陆卫兵, 刘震国, 陈昊 2018 67 184101Google Scholar
Li X B, Lu W B, Liu Z G, Chen H 2018 Acta Phys. Sin. 67 184101Google Scholar
[14] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 70 178101Google Scholar
Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178101Google Scholar
[15] Castaldi G, Zhang L, Moccia M, Hathaway A Y, Tang W X, Cui T J, Galdi V 2021 Adv. Funct. Mater. 31 2007620Google Scholar
[16] 马婧, 刘冬冬, 王继成, 冯延 2018 67 094102Google Scholar
Ma J, Liu D D, Wang J C, Feng Y 2018 Acta Phys. Sin. 67 094102Google Scholar
[17] Sun W J, Yang W W, Guo L, Qin W, Chen J X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1088Google Scholar
[18] Xia Z X, Leung K W, Yang N, Lu K 2021 IEEE Trans. Antennas Propag. 69 2031Google Scholar
[19] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强 2021 70 168101Google Scholar
Pang H Z, Wang X, Wang J L, Wang Z L, Liu S Y L T, Tian H Q 2021 Acta Phys. Sin. 70 168101Google Scholar
[20] Wang H, Sui S, Li Y, Chen H, Wang J, Zhang J, Qu S 2020 Smart Mater. Struct. 29 015029Google Scholar
[21] Tian J, Cao X, Gao J, Yang H, Han J, Yu H, Wang S, Jin R, Li T 2019 J. Appl. Phys. 125 135105Google Scholar
[22] He J H, Wang S Q, Li X W, Fan J D, Guo L Y, Guo L, Huang X J 2021 Phys. Scr. 96 125846Google Scholar
[23] Liu G Y, Li L, Han J Q, Liu H X, Gao X H, Shi Y, Cui T J 2020 ACS Appl. Mater. Interfaces 12 23554Google Scholar
[24] Wang H L, Ma H F, Chen M, Sun S, Cui T J 2021 Adv. Funct. Mater. 31 2100275Google Scholar
[25] Zhang N, Chen K, Zheng Y, Hu Q, Qu K, Zhao J, Wang J, Feng Y 2020 IEEE J. Em. Sel. Top. C 10 20
-
-
[1] Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar
[2] Huang X J, Yang H L, Zhang D H, Luo Y 2019 IEEE Trans. Antennas Propag. 67 4636Google Scholar
[3] Li Y, Cao Q, Wang Y 2018 IEEE Antennas Wirel. Propag. Lett. 17 1314Google Scholar
[4] Nama L, Nilotpal, Bhattacharyya S, Jain P K 2021 IEEE Antennas Propag. Mag. 63 100Google Scholar
[5] Zheng Q, Guo C, Ding J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1459Google Scholar
[6] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明, 徐进, 李荣强, 蒋小平, 王身云, 韩天成 2021 70 027803Google Scholar
Li H P, Wu X, Ding H Y, Xin K W, Wang G M, Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2021 Acta Phys. Sin. 70 027803Google Scholar
[7] 徐进, 李荣强, 蒋小平, 王身云, 韩天成 2019 68 117081Google Scholar
Xu J, Li R Q, Jiang X P, Wang S Y, Han T C 2019 Acta Phys. Sin. 68 117081Google Scholar
[8] Li Y, Lin J, Guo H, Sun W, Xiao S, Zhou L 2020 Adv. Opt. Mater. 8 1901548Google Scholar
[9] Shen Z Y, Huang X J, Yang H L, Xiang T Y, Wang C W, Yu Z T, Wu J 2018 J. Appl. Phys. 123 225106Google Scholar
[10] Negm A, Bakr M, Howlader M, Ali S 2021 Smart Mater. Struct. 30 075011Google Scholar
[11] 高喜, 唐李光 2021 70 038101Google Scholar
Gao X, Tang L G 2021 Acta Phys. Sin. 70 038101Google Scholar
[12] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓 2021 70 188701Google Scholar
Li G Q, Shi H N, Liu K, Li B L, Yi J J, Zhang A X, Xu Z 2021 Acta Phys. Sin. 70 188701Google Scholar
[13] 李小兵, 陆卫兵, 刘震国, 陈昊 2018 67 184101Google Scholar
Li X B, Lu W B, Liu Z G, Chen H 2018 Acta Phys. Sin. 67 184101Google Scholar
[14] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 70 178101Google Scholar
Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178101Google Scholar
[15] Castaldi G, Zhang L, Moccia M, Hathaway A Y, Tang W X, Cui T J, Galdi V 2021 Adv. Funct. Mater. 31 2007620Google Scholar
[16] 马婧, 刘冬冬, 王继成, 冯延 2018 67 094102Google Scholar
Ma J, Liu D D, Wang J C, Feng Y 2018 Acta Phys. Sin. 67 094102Google Scholar
[17] Sun W J, Yang W W, Guo L, Qin W, Chen J X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1088Google Scholar
[18] Xia Z X, Leung K W, Yang N, Lu K 2021 IEEE Trans. Antennas Propag. 69 2031Google Scholar
[19] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强 2021 70 168101Google Scholar
Pang H Z, Wang X, Wang J L, Wang Z L, Liu S Y L T, Tian H Q 2021 Acta Phys. Sin. 70 168101Google Scholar
[20] Wang H, Sui S, Li Y, Chen H, Wang J, Zhang J, Qu S 2020 Smart Mater. Struct. 29 015029Google Scholar
[21] Tian J, Cao X, Gao J, Yang H, Han J, Yu H, Wang S, Jin R, Li T 2019 J. Appl. Phys. 125 135105Google Scholar
[22] He J H, Wang S Q, Li X W, Fan J D, Guo L Y, Guo L, Huang X J 2021 Phys. Scr. 96 125846Google Scholar
[23] Liu G Y, Li L, Han J Q, Liu H X, Gao X H, Shi Y, Cui T J 2020 ACS Appl. Mater. Interfaces 12 23554Google Scholar
[24] Wang H L, Ma H F, Chen M, Sun S, Cui T J 2021 Adv. Funct. Mater. 31 2100275Google Scholar
[25] Zhang N, Chen K, Zheng Y, Hu Q, Qu K, Zhao J, Wang J, Feng Y 2020 IEEE J. Em. Sel. Top. C 10 20
计量
- 文章访问数: 5270
- PDF下载量: 195
- 被引次数: 0