-
激光在大气传输过程中其相干特性受湍流影响而下降, 进一步影响相干探测过程的效率和性能. 本文定义大气相干时间描述激光经大气传输后接收光场的起伏速度, 大气相干时间与相干过程持续时间的相对大小决定了相干探测过程的性能. 本文基于多层动态相位屏技术仿真激光大气传输过程, 并系统研究大气参数、收发参数、波长等对大气相干时间的影响规律. 研究指出大气相干时间与波长、接收口径、大气相干长度呈正相关, 与风速呈反比; 通过改进光学设计、光束整形、激光选频等方法能够有效减少湍流扰动的影响, 提高接收光场的稳定性, 进而改善湍流对相干探测过程的不良影响. 大气相干时间是衡量湍流对相干探测影响的重要参数, 本研究可为评估大气对相干探测过程的影响提供有力参考.In the process of laser propagation in atmosphere, its coherence characteristics are reduced by turbulence, which further affects the efficiency and performance of coherent detection process. In this paper, atmospheric coherence time is defined to describe the fluctuation speed of laser field after atmospheric transmission. The relative size of atmospheric coherence time and coherence process duration time determines the performance of coherent detection process. According to the infinitely long phase screen technology, we simulate laser atmospheric transmission, and systematically study the influences of atmospheric parameters, transceiver parameters and wavelength on atmospheric coherence time. It is found that the atmospheric coherence time is positively correlated with wavelength, receiving aperture and atmospheric coherence length, and inversely proportional to wind speed, which shows that the atmospheric coherence time can be effectively improved by improving the optical design and changing the laser band, thus effectively reducing the disturbance caused by turbulence and improving the stability of the received light field. The atmospheric coherence time defined in this paper is an important parameter to measure the influence of turbulence on coherent detection. This study can provide a powerful reference for evaluating the influence of atmosphere on coherent detection process.
-
Keywords:
- coherent detection /
- atmospheric turbulence /
- atmospheric coherence time /
- infinitely long phase screen
[1] Zhao Y Y, Zhu D S, Tu Y R, Pi L L, Li H T, Xu L, Hu Zh J, Shen Y C, Yu B L, Lu L 2021 Opt. Lett. 46 1229Google Scholar
[2] Redding B, Choma M A, Cao H 2012 Nat. Photon. 6 355Google Scholar
[3] 黄龙, 冯国英, 廖宇 2015 红外与激光工程 44 3530Google Scholar
Huang L, Feng G Y, Liao Y 2015 Infrared Laser Eng. 44 3530Google Scholar
[4] Semjon S, Mark G, Werner R 2016 Opt. Eng. 55 111614
[5] 曾素娟, 蓝银涛, 高伟健, 黄文燕, 舒焱, 葛立宏, 张建 2021 激光生物学报 30 131Google Scholar
Zeng S J, Lan Y T, Gao W J, Huang W Y, Shu Y, Ge L H, Zhang J 2021 Acta. Laser Bio. Sinc. 30 131Google Scholar
[6] Ali R 2021 Ultrasonic Imaging. 43 282Google Scholar
[7] 张羽, 罗秀娟, 刘辉, 陈明徕 2018 67 044201Google Scholar
Zhang Y, Luo X J, Liu H, Chen M L 2018 Acta Phys. Sin. 67 044201Google Scholar
[8] 陈晓文, 汤明玥, 季小玲 2008 4 2607Google Scholar
Chen X W, Tang M Y, Ji X L 2008 Acta Phys. Sin. 4 2607Google Scholar
[9] 陈晓文, 季小玲 2009 58 2435Google Scholar
Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435Google Scholar
[10] 季小玲, 肖希, 吕百达 2004 53 3996Google Scholar
Ji X L, Xiao X, Lü B D 2004 Acta Phys. Sin. 53 3996Google Scholar
[11] 王华, 王向朝, 曾爱军, 杨坤 2008 57 634Google Scholar
Wang H, Wang X C, Zeng A J, Yang K 2008 Acta Phys. Sin. 57 634Google Scholar
[12] 任建迎, 孙华燕, 赵延仲, 张来线 2020 中国光学 13 728Google Scholar
Ren J Y, Sun H Y, Zhao T Z, Zhang L X 2020 Chin. Opt. 13 728Google Scholar
[13] 王华, 王向朝, 曾爱军 2007 光学学报 27 1548Google Scholar
Wang H, Wang X C, Zeng A J 2007 Acta Optic Sin. 27 1548Google Scholar
[14] 饶瑞中 2005 光在湍流大气中的传播 (合肥: 安徽科学技术出版社) 第95页
Rao R Z 2005 Light Propagation in the Turbulent Atmosphere (Hefei: Anhui Science & Technology Press) p95 (in Chinese)
[15] McGlamery B L 1976 Proc. SPIE. 0074 954724Google Scholar
[16] Sedmak G 2004 Appl. Opt. 38 2161Google Scholar
[17] 吴晗玲, 严海星, 李新阳 2009 光学学报 129 114
Wu H L, Yan H X, Li X Y 2009 Acta. Opt. Sinc. 129 114
[18] Roddier N A 1990 Opt. Eng. 29 1174Google Scholar
[19] Harding C M, Johnston R A, Lane R G 1999 Appl. Opt. 38 2161Google Scholar
[20] Assémat F, Wilson R W, Gendron E 2006 Opt. Express. 14 988Google Scholar
[21] Roddier F 1981 Prog. Optics 19 281Google Scholar
[22] Ziad A, Borgnino J, Martin F, Maire J, Mourad D 2010 Proc. SPIE. 7733 857259Google Scholar
[23] Fried D L 1965 J. Opt. Soc. Am. 55 1427Google Scholar
[24] Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2003 Eur. J. Phys. 24 329Google Scholar
[25] Andrews L C, Phillips R L 2005 SPIE Press. 201 250Google Scholar
[26] Wolf E 1954 Nuovo. Cimento. 12 884Google Scholar
[27] Longuet-Higgins H C, Roberts M De V 1955 Pro. Roy. Soc. A 230 110Google Scholar
[28] Beckers J M 1993 Annu. Rev. Astron. Astr. 10 1146Google Scholar
-
图 3 大气相干时间随大气相干长度与风速的变化 (a) L = 1100 m,
${w_0} = 0.1\;{\text{ m}}$ ,$\nu = 10 \;{\rm{m/s}}$ ; (b)$L = 1100\;{\text{ m}}$ ,${w_0} = 0.1\;{\text{ m}}$ ,${r_0} = 0.1\;{\text{ m}}$ ; (c)$\lambda = 532\;{\text{ nm}}$ ,${w_0} = 0.1\;{\text{ m}}$ ,$\nu = 10 \;{\rm{m/s}}$ ; (d)$\lambda = 532\;{\text{ nm}}$ ,${w_0} = 0.1\;{\text{ m}}$ ,${r_0} = 0.1\;{\text{ m}}$ ; (e)$L = 1100\;{\text{ m}}$ ,$\lambda = 532\;{\text{ nm}}$ ,$\nu = 10\;{\text{ }}{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. } {\text{s}}}$ ; (f)$L = 1100\;{\text{ m}}$ ,$\lambda = 532\;{\text{ nm}}$ ,${r_0} = 0.1\;{\text{ m}}$ Fig. 3. Atmospheric coherent time varies with atmospheric coherence length and wind speeds: (a)
$L = 1100\;{\text{ m}}$ ,${w_0} = 0.1\;{\text{ m}}$ ,$\nu = 10 \;{\rm{m/s}}$ ; (b)$L = 1100\;{\text{ m}}$ ,${w_0} = 0.1\;{\text{ m}}$ ,${r_0} = 0.1\;{\text{ m}}$ ; (c)$\lambda = 532\;{\text{ nm}}$ ,${w_0} = 0.1\;{\text{ m}}$ ,$\nu = 10 \;{\rm{m/s}}$ ; (d)$\lambda = 532\;{\text{ nm}}$ ,${w_0} = 0.1\;{\text{ m}}$ ,${r_0} = 0.1\;{\text{ m}}$ ; (e)$L = 1100\;{\text{ m}}$ ,$\lambda = 532\;{\text{ nm}}$ ,$\nu = 10\;{\text{ }}{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. } {\text{s}}}$ ; (f)$L = 1100\;{\text{ m}}$ ,$\lambda = 532\;{\text{ nm}}$ ,${r_0} = 0.1\;{\text{ m}}$ .图 4 大气相干时间随束腰半径变化 (a)
$L = 1100\;{\text{ m}}$ ,$\nu = 10 \;{\rm{m/s}}$ ,$\lambda = 532\;{\text{ nm}}$ ,$D = 0.5\;{\text{ m}}$ ; (b)$\nu = 10 \;{\rm{m/s}}$ ,${r_0} = 0.1\;{\text{ m}}$ ,$\lambda = 532\;{\text{ nm}}$ ,$D = 0.5\;{\text{ m}}$ ; (c)$L = 1100\;{\text{ m}}$ ,$\nu = 10 \;{\rm{m/s}}$ ,${r_0} = 0.1\;{\text{ m}}$ ,$\lambda = 532\;{\text{ nm}}$ ; (d)$\nu = 10 \;{\rm{m/s}}$ ,${r_0} = 0.1\;{\text{ m}}$ ,$L = 1100\;{\text{ m}}$ ,$\lambda = 532\;{\text{ nm}}$ Fig. 4. Atmospheric coherent time varies with beam waist radius: (a)
$L = 1100\;{\text{ m}}$ ,$\nu = 10 \;{\rm{m/s}}$ ,$\lambda = 532\;{\text{ nm}}$ ,$D = 0.5\;{\text{ m}}$ ; (b)$\nu = 10 \;{\rm{m/s}}$ ,${r_0} = 0.1\;{\text{ m}}$ ,$\lambda = 532\;{\text{ nm}}$ ,$D = 0.5\;{\text{ m}}$ ; (c)$L = 1100\;{\text{ m}}$ ,$\nu = 10 \;{\rm{m/s}}$ ,${r_0} = 0.1\;{\text{ m}}$ ,$\lambda = 532\;{\text{ nm}}$ ; (d)$\nu = 10 \;{\rm{m/s}}$ ,${r_0} = 0.1\;{\text{ m}}$ ,$L = 1100\;{\text{ m}}$ ,$\lambda = 532\;{\text{ nm}}$ 图 5
$\nu = 10 \;{\rm{m/s}} , L=1100\;\text{ m }, \lambda =532\;\text{ nm}$ , 大气相干时间随接收口径的变化 (a)${w_0} = 0.1\;{\text{ m}}$ ; (b)${r_0} = 0.1\;{\text{ m }}$ Fig. 5. Atmospheric coherent time varies with receiving aperture at
$\nu = 10 \;{\rm{m/s}} , L=1100\;\text{ m }, \lambda =532\;\text{ nm}$ : (a)${w_0} = 0.1\;{\text{ m}}$ ; (b)${r_0} = 0.1\;{\text{ m }}$ -
[1] Zhao Y Y, Zhu D S, Tu Y R, Pi L L, Li H T, Xu L, Hu Zh J, Shen Y C, Yu B L, Lu L 2021 Opt. Lett. 46 1229Google Scholar
[2] Redding B, Choma M A, Cao H 2012 Nat. Photon. 6 355Google Scholar
[3] 黄龙, 冯国英, 廖宇 2015 红外与激光工程 44 3530Google Scholar
Huang L, Feng G Y, Liao Y 2015 Infrared Laser Eng. 44 3530Google Scholar
[4] Semjon S, Mark G, Werner R 2016 Opt. Eng. 55 111614
[5] 曾素娟, 蓝银涛, 高伟健, 黄文燕, 舒焱, 葛立宏, 张建 2021 激光生物学报 30 131Google Scholar
Zeng S J, Lan Y T, Gao W J, Huang W Y, Shu Y, Ge L H, Zhang J 2021 Acta. Laser Bio. Sinc. 30 131Google Scholar
[6] Ali R 2021 Ultrasonic Imaging. 43 282Google Scholar
[7] 张羽, 罗秀娟, 刘辉, 陈明徕 2018 67 044201Google Scholar
Zhang Y, Luo X J, Liu H, Chen M L 2018 Acta Phys. Sin. 67 044201Google Scholar
[8] 陈晓文, 汤明玥, 季小玲 2008 4 2607Google Scholar
Chen X W, Tang M Y, Ji X L 2008 Acta Phys. Sin. 4 2607Google Scholar
[9] 陈晓文, 季小玲 2009 58 2435Google Scholar
Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435Google Scholar
[10] 季小玲, 肖希, 吕百达 2004 53 3996Google Scholar
Ji X L, Xiao X, Lü B D 2004 Acta Phys. Sin. 53 3996Google Scholar
[11] 王华, 王向朝, 曾爱军, 杨坤 2008 57 634Google Scholar
Wang H, Wang X C, Zeng A J, Yang K 2008 Acta Phys. Sin. 57 634Google Scholar
[12] 任建迎, 孙华燕, 赵延仲, 张来线 2020 中国光学 13 728Google Scholar
Ren J Y, Sun H Y, Zhao T Z, Zhang L X 2020 Chin. Opt. 13 728Google Scholar
[13] 王华, 王向朝, 曾爱军 2007 光学学报 27 1548Google Scholar
Wang H, Wang X C, Zeng A J 2007 Acta Optic Sin. 27 1548Google Scholar
[14] 饶瑞中 2005 光在湍流大气中的传播 (合肥: 安徽科学技术出版社) 第95页
Rao R Z 2005 Light Propagation in the Turbulent Atmosphere (Hefei: Anhui Science & Technology Press) p95 (in Chinese)
[15] McGlamery B L 1976 Proc. SPIE. 0074 954724Google Scholar
[16] Sedmak G 2004 Appl. Opt. 38 2161Google Scholar
[17] 吴晗玲, 严海星, 李新阳 2009 光学学报 129 114
Wu H L, Yan H X, Li X Y 2009 Acta. Opt. Sinc. 129 114
[18] Roddier N A 1990 Opt. Eng. 29 1174Google Scholar
[19] Harding C M, Johnston R A, Lane R G 1999 Appl. Opt. 38 2161Google Scholar
[20] Assémat F, Wilson R W, Gendron E 2006 Opt. Express. 14 988Google Scholar
[21] Roddier F 1981 Prog. Optics 19 281Google Scholar
[22] Ziad A, Borgnino J, Martin F, Maire J, Mourad D 2010 Proc. SPIE. 7733 857259Google Scholar
[23] Fried D L 1965 J. Opt. Soc. Am. 55 1427Google Scholar
[24] Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2003 Eur. J. Phys. 24 329Google Scholar
[25] Andrews L C, Phillips R L 2005 SPIE Press. 201 250Google Scholar
[26] Wolf E 1954 Nuovo. Cimento. 12 884Google Scholar
[27] Longuet-Higgins H C, Roberts M De V 1955 Pro. Roy. Soc. A 230 110Google Scholar
[28] Beckers J M 1993 Annu. Rev. Astron. Astr. 10 1146Google Scholar
计量
- 文章访问数: 4768
- PDF下载量: 138
- 被引次数: 0