搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔GaN/CuZnS异质结窄带近紫外光电探测器

郭越 孙一鸣 宋伟东

引用本文:
Citation:

多孔GaN/CuZnS异质结窄带近紫外光电探测器

郭越, 孙一鸣, 宋伟东

Narrowband near-ultraviolet photodetector fabricated from porous GaN/CuZnS heterojunction

Guo Yue, Sun Yi-Ming, Song Wei-Dong
PDF
HTML
导出引用
  • 窄带光电探测系统在荧光检测、人工视觉等领域具有广泛应用. 为了实现对特殊波段的窄带光谱探测, 传统上需要将宽带探测器和光学滤波片集成. 但是, 随着检测技术的发展, 人们对探测系统的功耗、尺寸、成本等方面也提出了更高要求, 结构复杂、成本高的传统窄带光电探测器应用受到限制. 于是, 本文展示了一种基于多孔GaN/CuZnS异质结的无滤波、窄带近紫外光电探测器. 通过光电化学刻蚀和水浴生长方法, 分别制备了具有低缺陷密度的多孔GaN薄膜和高空穴电导率的CuZnS薄膜, 并构建了多孔GaN/CuZnS异质结近紫外光电探测器. 得益于GaN的多孔结构和CuZnS的光学滤波作用, 器件在–2 V偏压、370 nm紫外光照下, 光暗电流比超过4个数量级; 更重要的是, 器件具有超窄带近紫外光响应(半峰宽<8 nm, 峰值为370 nm). 此外, 该探测器的峰值响应度、外量子效率和比探测率分别达到了0.41 A/W, 138.6%和9.8×1012 Jones. 这些优异的器件性能显示了基于多孔GaN/CuZnS异质结的近紫外探测器在窄光谱紫外检测领域具有广阔的应用前景.
    Narrowband photodetection systems are widely used in fluorescence detection, artificial vision and other fields. In order to realize the narrow spectral detection of special band, it is traditionally necessary to integrate broadband detectors with optical filters. However, with the development of detection technology, higher requirements have also been placed on the power consumption, size, and cost of the detection system, and the applications of traditional narrowband photodetectors with complex structures and high costs are limited. Thus, a filterless, narrowband near-ultraviolet photodetector based on a porous GaN/CuZnS heterojunction is demonstrated. The porous GaN thin films with low defect density and CuZnS thin films with high hole conductivity are fabricated by photoelectrochemical etching and water bath growth methods, respectively, and the porous GaN/CuZnS heterojunction near-ultraviolet photodetectors are thus fabricated. Benefiting from the porous structure of GaN and the optical filtering effect of CuZnS, the photo-dark current ratio of the device exceeds four orders of magnitudes under –2 V bias and 370 nm light illumination; more importantly, the device has an ultra-narrowband near-ultraviolet photoresponse with a full width at half maximum of <8 nm (peak at 370 nm). In addition, the peak responsivity, external quantum efficiency and specific detectivity reach 0.41 A/W, 138.6% and 9.8×1012 Jones, respectively. These excellent device performances show that the near-ultraviolet photodetectors based on porous GaN/CuZnS heterojunctions have broad application prospects in the field of narrow-spectrum ultraviolet photodetection.
      通信作者: 孙一鸣, yimingsun@m.scnu.edu.cn ; 宋伟东, wdsongwyu@163.com
    • 基金项目: 广东省重点领域研发计划(批准号: 2020B010174004)和广东省基础与应用基础研究基金(批准号: 2020A1515110185)资助的课题
      Corresponding author: Sun Yi-Ming, yimingsun@m.scnu.edu.cn ; Song Wei-Dong, wdsongwyu@163.com
    • Funds: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B010174004) and the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2020A1515110185).
    [1]

    Wang T, Liang H, Han Z, Sui Y, Mei Z 2021 Adv. Mater. Technol. 6 2000945Google Scholar

    [2]

    Wang S, Wu C, Wu F, Zhang F, Liu A, Zhao N, Guo D 2021 Sens. Actuators, A 330 112870Google Scholar

    [3]

    Qiu M, Sun P, Liu Y, Huang Q, Zhao C, Li Z, Mai W 2018 Adv. Mater. Technol. 3 1700288Google Scholar

    [4]

    Kim M, Seo J H, Singisetti U, Ma Z 2017 J. Mater. Chem. C 5 8338Google Scholar

    [5]

    Li L, Liu Z, Wang L, Zhang B, Liu Y, Ao J P 2018 Mater. Sci. Semicond. Process. 76 61Google Scholar

    [6]

    Zhou H, Gui P, Yu Q, Mei J, Wang H, Fang G 2015 J. Mater. Chem. C 3 990Google Scholar

    [7]

    Song W, Chen J, Li Z, Fang X 2021 Adv. Mater. 33 2101059Google Scholar

    [8]

    Wang Y, Wu C, Guo D, Li P, Wang S, Liu A, Li C, Wu F, Tang W 2020 ACS. Appl. Electron. Mater. 2 2032Google Scholar

    [9]

    Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhao D X, Shen D Z, Fan X W 2008 J. Phys. Chem. C 112 20546Google Scholar

    [10]

    Ni P N, Shan C X, Wang S P, Liu X Y, Shen D Z 2013 J. Mater. Chem. C 1 4445Google Scholar

    [11]

    王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍 2021 70 128502Google Scholar

    Wang S L, Wang Y C, Guo D Y, Li C R, Liu A P 2021 Acta Phys. Sin. 70 128502Google Scholar

    [12]

    Gui P, Li J, Zheng X, Wang H, Yao F, Hu X, Liu Y, Fang G 2020 J. Mater. Chem. C 8 6804Google Scholar

    [13]

    Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020 ACS Photonics 7 812Google Scholar

    [14]

    裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚 2015 64 067802Google Scholar

    Pei J N, Jiang D Y, Tian C G, Guo Z X, Liu R S, Sun L, Qin J M, Hou J H, Zhao J X, Liang Q C, Gao S 2015 Acta Phys. Sin. 64 067802Google Scholar

    [15]

    Sarkar K, Kumar P 2021 Appl. Surf. Sci. 566 150695Google Scholar

    [16]

    Yang C, Xi X, Yu Z, Cao H, Li J, Lin S, Ma Z, Zhao L 2018 ACS Appl. Mater. Interfaces 10 5492Google Scholar

    [17]

    Calahorra Y, Spiridon B, Wineman A, Busolo T, Griffin P, Szewczyk P K, Zhu T, Jing Q, Oliver R, Kar-Narayan S 2020 Appl. Mater. Today 21 100858Google Scholar

    [18]

    Xiao Y, Liu L, Ma Z H, Meng B, Qin S J, Pan G B 2019 Nanomaterials 9 1198Google Scholar

    [19]

    Yu R, Wang G, Shao Y, Wu Y, Wang S, Lian G, Zhang B, Hu H, Liu L, Zhang L, Hao X 2019 J. Mater. Chem. C 7 14116Google Scholar

    [20]

    Li J, Xi X, Lin S, Ma Z, Li X, Zhao L 2020 ACS Appl. Mater. Interfaces 12 11965Google Scholar

    [21]

    Li J, Xi X, Li X, Lin S, Ma Z, Xiu H, Zhao L 2022 Adv. Opt. Mater. 8 1902162Google Scholar

    [22]

    Li Q, Liu G, Yu J, Wang G, Wang S, Cheng T, Chen C, Liu L, Yang J, Xu X, Zhang L 2022 J. Mater. Chem. C 10 8321Google Scholar

    [23]

    Huang Z, Liu J, Zhang T, Jin Y, Wang J, Fan S, Li Q 2021 ACS Appl. Mater. Interfaces 13 22796Google Scholar

    [24]

    Hu J, Yang S, Zhang Z, Li H, Perumal Veeramalai C, Sulaman M, Saleem M I, Tang Y, Jiang Y, Tang L, Zou B 2021 J. Mater. Sci. Technol. 68 216Google Scholar

    [25]

    Rajamani S, Arora K, Konakov A, Belov A, Korolev D, Nikolskaya A, Mikhaylov A, Surodin S, Kryukov R, Nikolitchev D, Sushkov A, Pavlov D, Tetelbaum D, Kumar M, Kumar M 2018 Nanotechnology 29 305603Google Scholar

    [26]

    Lan Z, Lau Y S, Wang Y, Xiao Z, Ding L, Luo D, Zhu F 2020 Adv. Opt. Mater. 8 2001388Google Scholar

    [27]

    Qin Z, Song D, Xu Z, Qiao B, Huang D, Zhao S 2020 Org. Electron. 76 105417Google Scholar

    [28]

    Wang J, Xiao S, Qian W, Zhang K, Yu J, Xu X, Wang G, Zheng S, Yang S 2021 Adv. Mater. 33 2005557Google Scholar

    [29]

    Li J, Yang C, Liu L, Cao H, Lin S, Xi X, Li X, Ma Z, Wang K, Patanè A, Zhao L 2020 Adv. Opt. Mater. 8 1901276Google Scholar

    [30]

    Guo Y, Song W, Liu Q, Sun Y, Chen Z, He X, Zeng Q, Luo X, Zhang R, Li S 2022 J. Mater. Chem. C 10 5116Google Scholar

    [31]

    Wang X, Pan Y, Xu Y, Zhao J, Li Y, Li Q, Chen J, Zhao Z, Zhang X, Elemike E E, Onwudiwe D C, Bae B S, Lei W 2022 Adv. Electron. Mater. 8 2200178Google Scholar

    [32]

    Guo H, Jiang L, Huang K, Wang R, Liu S, Li Z, Rong X, Dong G 2021 Org. Electron. 92 106122Google Scholar

    [33]

    Zhang Y, Song W 2021 J. Mater. Chem. C 9 4799Google Scholar

    [34]

    Zhang Y, Xu X, Fang X 2019 InfoMat 1 542Google Scholar

    [35]

    Davis E A, Mott N F 1970 Philos. Mag. 22 0903Google Scholar

    [36]

    Zheng Y, Li Y, Tang X, Wang W, Li G 2020 Adv. Opt. Mater. 8 2000197Google Scholar

    [37]

    Shen L, Zhang Y, Bai Y, Zheng X, Wang Q, Huang J 2016 Nanoscale 8 12990Google Scholar

    [38]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [39]

    玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊 2021 70 238502Google Scholar

    Xuan X M, Wang J H, Mao Y Q, Ye L J, Zhang H, Li H L, Xiong Y Q, Fan S Q, Kong C Y, Li W J 2021 Acta Phys. Sin. 70 238502Google Scholar

    [40]

    Yadav A, Agrawal J, Singh V 2021 IEEE Photonics Technol. Lett. 33 1065Google Scholar

    [41]

    Zheng L, Hu K, Teng F, Fang X 2017 Small 13 1602448Google Scholar

    [42]

    Song W, Wang X, Xia C, Wang R, Zhao L, Guo D, Chen H, Xiao J, Su S, Li S 2017 Nano Energy 33 272Google Scholar

    [43]

    Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018 Adv. Mater. 30 1803165Google Scholar

    [44]

    Wang L, Jie J, Shao Z, Zhang Q, Zhang X, Wang Y, Sun Z, Lee S-T 2015 Adv. Funct. Mater. 25 2910Google Scholar

    [45]

    Li L, Deng Y, Bao C, Fang Y, Wei H, Tang S, Zhang F, Huang J 2017 Adv. Opt. Mater. 5 1700672Google Scholar

    [46]

    Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J 2017 Nano Lett. 17 1995Google Scholar

    [47]

    Shen L, Fang Y, Wei H, Yuan Y, Huang J 2016 Adv. Mater. 28 2043Google Scholar

    [48]

    Li W, Li D, Dong G, Duan L, Sun J, Zhang D, Wang L 2016 Laser Photonics Rev. 10 473Google Scholar

    [49]

    Zhang Y, Xu J, Shi S, Gao Y, Wang C, Zhang X, Yin S, Li L 2016 ACS Appl. Mater. Interfaces 8 22647Google Scholar

    [50]

    Wang H, Chen H, Li L, Wang Y, Su L, Bian W, Li B, Fang X 2019 J Phys Chem Lett 10 6850Google Scholar

    [51]

    Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L, Fang X 2012 Adv. Mater. 24 2305Google Scholar

  • 图 1  (a)多孔GaN、(b)平面GaN以及(c) CuZnS薄膜的SEM表征; (d) CuZnS薄膜的EDX分析

    Fig. 1.  SEM characterization of (a) porous GaN, (b) planar GaN and (c) CuZnS film; (d) EDX analysis of the CuZnS films.

    图 2  (a)多孔GaN薄膜和CuZnS薄膜的反射率图谱; (b) CuZnS薄膜的衍射图谱; 多孔GaN薄膜和(c)多孔GaN、CuZnS薄膜以及异质结的紫外-可见吸收光谱(插图为CuZnS的Tauc图)

    Fig. 2.  (a) Reflectance patterns of porous GaN and CuZnS films; (b) XRD patterns of CuZnS films; (c) UV-vis absorption spectrum of porous GaN, CuZnS films and GaN/CuZnS heterojunction; inset in (c) shows the Tauc plot of the CuZnS films.

    图 3  (a)多孔GaN/CuZnS异质结器件的I-V特性曲线(插图为多孔GaN/CuZnS异质结器件结构示意图); (b) CuZnS器件和(c)多孔GaN器件的I-V特性曲线, (b)和(c)中的插图分别显示了器件在370 nm光开关周期下的I-t曲线和相应的器件结构

    Fig. 3.  I-V characteristics of the (a) porous GaN/CuZnS heterojunction PD, inset in (a) shows the schematic illustration of the porous GaN/CuZnS structure; I-V characteristics of the (b) CuZnS PD devices and (c) porous GaN PD, insets in (b) and (c) show the I-t curves under switching 370 nm light illumination and corresponding device structures, respectively.

    图 4  不同刻蚀电压(V = 10, 15, 25 V)所制备的光电探测器的(a)光电流及光暗电流比、(b)响应度、(c)比探测率, 图(c)插图为器件的外量子效率

    Fig. 4.  (a) Photocurrent and light-to-dark ratio, (b) responsivity and (c) specific detectivity of PDs prepared for different etching voltages (V = 10, 15, 25 V); inset in (c) shows the external quantum efficiency of PDs.

    图 5  (a)不同强度的370 nm光照下多孔GaN/CuZnS异质结光电探测器的I-V特性; (b)光强和光电流相应的线性拟合曲线; (c)响应度和比探测率随光强变化; (d)多孔GaN/CuZnS异质结的能带示意图

    Fig. 5.  (a) Light intensity dependent I-V characteristics of porous GaN/CuZnS heterojunction PD under 370 nm light illumination; (b) light intensity dependent photocurrent and the corresponding linear fitting curve; (c) responsivity and detectivity as a function of light intensity; (d) the schematic energy band diagram of the porous GaN/CuZnS heterojunction.

    表 1  CuZnS薄膜和多孔GaN的霍尔效应测试数据

    Table 1.  Hall-effect test data of CuZnS films and porous GaN.

    SampleTemp./KBulk Con./cm–3Resistivity/(Ω·cm)Conductivity/
    (Ω·cm)–1
    Mobility/
    (cm2·(V·s)–1)
    CuZnS2955.24×10180.3243.0836.7
    Porous GaN2951.39×10170.1277.89355
    下载: 导出CSV

    表 2  无滤波器、窄带PD的典型参数比较

    Table 2.  Comparison of typical parameters of filter-free, narrowband PDs.

    Active materialsPeak wavelength/
    nm
    FWHM/nmBias/VEQE/%R/
    (mA·W–1)
    D*/
    Jones
    On/off ratioRef.
    PC71BM:PbS89050–718313108.0×1011~104[37]
    Hybrid perovskite78028012.1762.65×1012[45]
    P3HT:PC71BM65029–1049.02551.3×1011~102[46]
    P3HT:PCBM:CdTe66080–6~200~10647.3×1011~104[47]
    Organic ISQ68080–215.082.33.2×10121.8×103[48]
    p-NiO/n-ZnO3803000.51.4[49]
    Porous GaN/CuZnS3708–2136.8413.79.8×1012>104This work
    下载: 导出CSV
    Baidu
  • [1]

    Wang T, Liang H, Han Z, Sui Y, Mei Z 2021 Adv. Mater. Technol. 6 2000945Google Scholar

    [2]

    Wang S, Wu C, Wu F, Zhang F, Liu A, Zhao N, Guo D 2021 Sens. Actuators, A 330 112870Google Scholar

    [3]

    Qiu M, Sun P, Liu Y, Huang Q, Zhao C, Li Z, Mai W 2018 Adv. Mater. Technol. 3 1700288Google Scholar

    [4]

    Kim M, Seo J H, Singisetti U, Ma Z 2017 J. Mater. Chem. C 5 8338Google Scholar

    [5]

    Li L, Liu Z, Wang L, Zhang B, Liu Y, Ao J P 2018 Mater. Sci. Semicond. Process. 76 61Google Scholar

    [6]

    Zhou H, Gui P, Yu Q, Mei J, Wang H, Fang G 2015 J. Mater. Chem. C 3 990Google Scholar

    [7]

    Song W, Chen J, Li Z, Fang X 2021 Adv. Mater. 33 2101059Google Scholar

    [8]

    Wang Y, Wu C, Guo D, Li P, Wang S, Liu A, Li C, Wu F, Tang W 2020 ACS. Appl. Electron. Mater. 2 2032Google Scholar

    [9]

    Zhu H, Shan C X, Yao B, Li B H, Zhang J Y, Zhao D X, Shen D Z, Fan X W 2008 J. Phys. Chem. C 112 20546Google Scholar

    [10]

    Ni P N, Shan C X, Wang S P, Liu X Y, Shen D Z 2013 J. Mater. Chem. C 1 4445Google Scholar

    [11]

    王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍 2021 70 128502Google Scholar

    Wang S L, Wang Y C, Guo D Y, Li C R, Liu A P 2021 Acta Phys. Sin. 70 128502Google Scholar

    [12]

    Gui P, Li J, Zheng X, Wang H, Yao F, Hu X, Liu Y, Fang G 2020 J. Mater. Chem. C 8 6804Google Scholar

    [13]

    Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S, Liu M 2020 ACS Photonics 7 812Google Scholar

    [14]

    裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚 2015 64 067802Google Scholar

    Pei J N, Jiang D Y, Tian C G, Guo Z X, Liu R S, Sun L, Qin J M, Hou J H, Zhao J X, Liang Q C, Gao S 2015 Acta Phys. Sin. 64 067802Google Scholar

    [15]

    Sarkar K, Kumar P 2021 Appl. Surf. Sci. 566 150695Google Scholar

    [16]

    Yang C, Xi X, Yu Z, Cao H, Li J, Lin S, Ma Z, Zhao L 2018 ACS Appl. Mater. Interfaces 10 5492Google Scholar

    [17]

    Calahorra Y, Spiridon B, Wineman A, Busolo T, Griffin P, Szewczyk P K, Zhu T, Jing Q, Oliver R, Kar-Narayan S 2020 Appl. Mater. Today 21 100858Google Scholar

    [18]

    Xiao Y, Liu L, Ma Z H, Meng B, Qin S J, Pan G B 2019 Nanomaterials 9 1198Google Scholar

    [19]

    Yu R, Wang G, Shao Y, Wu Y, Wang S, Lian G, Zhang B, Hu H, Liu L, Zhang L, Hao X 2019 J. Mater. Chem. C 7 14116Google Scholar

    [20]

    Li J, Xi X, Lin S, Ma Z, Li X, Zhao L 2020 ACS Appl. Mater. Interfaces 12 11965Google Scholar

    [21]

    Li J, Xi X, Li X, Lin S, Ma Z, Xiu H, Zhao L 2022 Adv. Opt. Mater. 8 1902162Google Scholar

    [22]

    Li Q, Liu G, Yu J, Wang G, Wang S, Cheng T, Chen C, Liu L, Yang J, Xu X, Zhang L 2022 J. Mater. Chem. C 10 8321Google Scholar

    [23]

    Huang Z, Liu J, Zhang T, Jin Y, Wang J, Fan S, Li Q 2021 ACS Appl. Mater. Interfaces 13 22796Google Scholar

    [24]

    Hu J, Yang S, Zhang Z, Li H, Perumal Veeramalai C, Sulaman M, Saleem M I, Tang Y, Jiang Y, Tang L, Zou B 2021 J. Mater. Sci. Technol. 68 216Google Scholar

    [25]

    Rajamani S, Arora K, Konakov A, Belov A, Korolev D, Nikolskaya A, Mikhaylov A, Surodin S, Kryukov R, Nikolitchev D, Sushkov A, Pavlov D, Tetelbaum D, Kumar M, Kumar M 2018 Nanotechnology 29 305603Google Scholar

    [26]

    Lan Z, Lau Y S, Wang Y, Xiao Z, Ding L, Luo D, Zhu F 2020 Adv. Opt. Mater. 8 2001388Google Scholar

    [27]

    Qin Z, Song D, Xu Z, Qiao B, Huang D, Zhao S 2020 Org. Electron. 76 105417Google Scholar

    [28]

    Wang J, Xiao S, Qian W, Zhang K, Yu J, Xu X, Wang G, Zheng S, Yang S 2021 Adv. Mater. 33 2005557Google Scholar

    [29]

    Li J, Yang C, Liu L, Cao H, Lin S, Xi X, Li X, Ma Z, Wang K, Patanè A, Zhao L 2020 Adv. Opt. Mater. 8 1901276Google Scholar

    [30]

    Guo Y, Song W, Liu Q, Sun Y, Chen Z, He X, Zeng Q, Luo X, Zhang R, Li S 2022 J. Mater. Chem. C 10 5116Google Scholar

    [31]

    Wang X, Pan Y, Xu Y, Zhao J, Li Y, Li Q, Chen J, Zhao Z, Zhang X, Elemike E E, Onwudiwe D C, Bae B S, Lei W 2022 Adv. Electron. Mater. 8 2200178Google Scholar

    [32]

    Guo H, Jiang L, Huang K, Wang R, Liu S, Li Z, Rong X, Dong G 2021 Org. Electron. 92 106122Google Scholar

    [33]

    Zhang Y, Song W 2021 J. Mater. Chem. C 9 4799Google Scholar

    [34]

    Zhang Y, Xu X, Fang X 2019 InfoMat 1 542Google Scholar

    [35]

    Davis E A, Mott N F 1970 Philos. Mag. 22 0903Google Scholar

    [36]

    Zheng Y, Li Y, Tang X, Wang W, Li G 2020 Adv. Opt. Mater. 8 2000197Google Scholar

    [37]

    Shen L, Zhang Y, Bai Y, Zheng X, Wang Q, Huang J 2016 Nanoscale 8 12990Google Scholar

    [38]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [39]

    玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊 2021 70 238502Google Scholar

    Xuan X M, Wang J H, Mao Y Q, Ye L J, Zhang H, Li H L, Xiong Y Q, Fan S Q, Kong C Y, Li W J 2021 Acta Phys. Sin. 70 238502Google Scholar

    [40]

    Yadav A, Agrawal J, Singh V 2021 IEEE Photonics Technol. Lett. 33 1065Google Scholar

    [41]

    Zheng L, Hu K, Teng F, Fang X 2017 Small 13 1602448Google Scholar

    [42]

    Song W, Wang X, Xia C, Wang R, Zhao L, Guo D, Chen H, Xiao J, Su S, Li S 2017 Nano Energy 33 272Google Scholar

    [43]

    Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X 2018 Adv. Mater. 30 1803165Google Scholar

    [44]

    Wang L, Jie J, Shao Z, Zhang Q, Zhang X, Wang Y, Sun Z, Lee S-T 2015 Adv. Funct. Mater. 25 2910Google Scholar

    [45]

    Li L, Deng Y, Bao C, Fang Y, Wei H, Tang S, Zhang F, Huang J 2017 Adv. Opt. Mater. 5 1700672Google Scholar

    [46]

    Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J 2017 Nano Lett. 17 1995Google Scholar

    [47]

    Shen L, Fang Y, Wei H, Yuan Y, Huang J 2016 Adv. Mater. 28 2043Google Scholar

    [48]

    Li W, Li D, Dong G, Duan L, Sun J, Zhang D, Wang L 2016 Laser Photonics Rev. 10 473Google Scholar

    [49]

    Zhang Y, Xu J, Shi S, Gao Y, Wang C, Zhang X, Yin S, Li L 2016 ACS Appl. Mater. Interfaces 8 22647Google Scholar

    [50]

    Wang H, Chen H, Li L, Wang Y, Su L, Bian W, Li B, Fang X 2019 J Phys Chem Lett 10 6850Google Scholar

    [51]

    Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L, Fang X 2012 Adv. Mater. 24 2305Google Scholar

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器.  , 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器.  , 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [3] 宜子琪, 王彦明, 王硕, 隋雪, 石佳辉, 杨壹涵, 王德煜, 冯秋菊, 孙景昌, 梁红伟. 基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究.  , 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [4] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响.  , 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [5] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟. Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能.  , 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [6] 李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华. 关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析.  , 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [7] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器.  , 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [8] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用.  , 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [9] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器.  , 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [10] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器.  , 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [11] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率.  , 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [12] 裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚. 包埋Pt纳米粒子对金属-半导体-金属结构ZnO紫外光电探测器性能的影响.  , 2015, 64(6): 067802. doi: 10.7498/aps.64.067802
    [13] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析.  , 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [14] 伍楷舜, 龙兴腾, 董建文, 陈弟虎, 汪河洲. 光子晶体异质结的位相和应用.  , 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [15] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究.  , 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [16] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管.  , 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [17] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究.  , 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [18] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模.  , 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [19] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质.  , 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [20] 李国辉, 周世平, 徐得名. GaAs/AlGaAs异质结动力学行为研究.  , 2001, 50(8): 1567-1573. doi: 10.7498/aps.50.1567
计量
  • 文章访问数:  5803
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-07-05
  • 上网日期:  2022-10-25
  • 刊出日期:  2022-11-05

/

返回文章
返回
Baidu
map