搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意方向电偶极子在水平分层受限空间中的远区辐射场求解

周丽丽 胡欣悦 穆中林 张蕤 郑悦

引用本文:
Citation:

任意方向电偶极子在水平分层受限空间中的远区辐射场求解

周丽丽, 胡欣悦, 穆中林, 张蕤, 郑悦

Far-field calculation of an arbitrarily oriented electric dipole in horizontal layered confined space

Zhou Li-Li, Hu Xin-Yue, Mu Zhong-Lin, Zhang Rui, Zheng Yue
PDF
HTML
导出引用
  • 任意方向电偶极子在分层受限空间中的远区辐射场求解对于分析云闪回击、对潜通信、地波超视距雷达等领域中电磁特性问题具有重要意义. 本文基于镜像法和偶极子在自由空间远区辐射场, 建立了三层水平受限空间模型, 对其间任意取向电偶极子产生的远区辐射场表达式进行了推导, 综合考虑了从源点到观测点的直达波及上、下界面的一次反射波影响. 在此基础上, 比较分析了频率为100 kHz, 6 MHz和10 MHz的电偶极子处于地-电离层模型中不同位置时传播的辐射特性. 结果显示: 对于同一位置辐射源, 电偶极子的频率越高, 辐射波瓣数目越多; 当偶极子源的频率相同时, 源点距离下界面越远, 辐射波瓣数目亦越多.
    The far-field calculation of arbitrarily oriented electric dipole in a stratified confined space is of great significance in analyzing electromagnetic properties in the lightning return stroke, submarine communication, over-the-horizon ground-wave radar, etc. Based on the mirror image method and the far-field approximation of an electric dipole in free space, a three-layer horizontal confined space model with an arbitrarily oriented dipole is established in this work. Through novel vector operations, the expression of the far field generated by an arbitrarily oriented electric dipole in the confined space model is derived, where the direct wave from the source point to the observation point and the waves reflected by the upper boundary and the lower boundary are all comprehensively considered. On this basis, the radiation characteristics of the electric dipole with frequencies of 100 kHz, 6 MHz and 10 MHz at different positions in the Earth-ionosphere waveguide are compared and analyzed, which are taken for example. Three different orientations of electric dipoles,i.e. vertical direction, horizontal direction, and 45º tilt are taken into account and the corresponding radiation patterns are presented. The results show that the radiation characteristics of electric dipoles in the Earth-ionosphere waveguide will change greatly with their frequencies, orientations and positions. For the electric dipole source at the same location, the higher the frequency, the more the number of radiation lobes is. In addition, when the source frequency keeps unchanged, the farther the dipole source is from the bottom boundary, the more the radiated lobes are. The proposed expression can conveniently and accurately consider the direct wave of a dipole source and its primary reflection from the upper interface and the lower interface in a confined space, and can also be further extended to solving the contribution of multiple reflections from the interfaces.
      通信作者: 周丽丽, zhoulili@sust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62171265)资助的课题.
      Corresponding author: Zhou Li-Li, zhoulili@sust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62171265).
    [1]

    李凯 2010 分层介质中的电磁场和电磁波 (杭州: 浙江大学出版社) 第21—85页

    Li K 2010 Electromagnetic Fields and Waves in Layered Media (Hangzhou: Zhejiang University Press) pp21–85 (in Chinese)

    [2]

    吴静, 周志为, 闫旭 2015 64 194101Google Scholar

    Wu J, Zhou Z W, Yan X 2015 Acta Phys. Sin. 64 194101Google Scholar

    [3]

    张歆, 童昱泽, 田志颖, 王金洪, 姚泽 2020 69 248401Google Scholar

    Zhang X, Tong Y Z, Tian Z Y, Wang J H, Yao Z 2020 Acta Phys. Sin. 69 248401Google Scholar

    [4]

    王宏磊 2016 博士学位论文 (西安: 西北工业大学)

    Wang H L 2016 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [5]

    Zeng H R, He T, Li K 2021 IEEE Trans. Antennas Propag. 69 5870Google Scholar

    [6]

    Sommerfeld A 1909 Ann. Phys. 28 665

    [7]

    Nazari M E, Huang W M 2020 IEEE Trans. Antennas Propag. 68 1181Google Scholar

    [8]

    Wang J H, Li B 2017 IEEE Trans. Antennas Propag. 65 2707Google Scholar

    [9]

    Wait J R 1966 IEEE Trans. Antennas Propag. 14 790Google Scholar

    [10]

    King R W P, Sandler S S 1994 IEEE Trans. Antennas Propag. 42 382Google Scholar

    [11]

    Zhang H Q, Pan W Y 2002 Radio Sci. 37 1Google Scholar

    [12]

    Collin R E 2002 Electromagentic Wave Theory (Beijing: Higher Education Press) pp219–328

    [13]

    洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达 2012 61 160302Google Scholar

    Hong Q Q, Zhong W B, Yu Y Z, Cai Z S, Chen M S, Lin S D 2012 Acta Phys. Sin. 61 160302Google Scholar

    [14]

    潘威炎 2004 长波超长波极长波传播 (成都: 电子科技大学出版社) 第40—80页

    Pan W Y 2004 Long Wave Ultra Long Wave Very Long Wave Propagation (Chengdu: University of Electronic Science and Technology Press) pp40–80 (in Chinese)

    [15]

    陈聪, 李定国, 蒋治国, 刘华波 2012 61 244101Google Scholar

    Chen C, Li D G, Jiang Z G Liu H B 2012 Acta Phys. Sin. 61 244101Google Scholar

    [16]

    He L N, He T, Li K 2020 Int. J. Antenn. Propag. 2020 1Google Scholar

    [17]

    朱秀芹, 潘威炎, 官伯然 2009 电波科学学报 24 71Google Scholar

    Zhu X Q, Pan W Y, Guan B R 2009 Chin. J. Radio Sci. 24 71Google Scholar

    [18]

    顾婷婷 2019 博士学位论文 (杭州: 浙江大学)

    Gu T T 2019 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [19]

    Gao Y, Di Q Y, Wang R, Fu C M, Liang P F, Zheng F H 2021 IEEE Trans. Geosci. Remote Sens. 60 1Google Scholar

    [20]

    Zhao S F, Zhang X M, Zhao Z Y, Shen X H 2014 Ann. Geophys. 32 194Google Scholar

    [21]

    葛德彪, 魏兵 2012 61 050301Google Scholar

    Ge D B, Wei B 2012 Acta Phys. Sin. 61 050301Google Scholar

    [22]

    Cao L, Wei B, Ge D B 2013 Waves Random Complex Media 23 446Google Scholar

    [23]

    Shen N, Wei B, Yin W K 2019 Results Phys. 14 102388Google Scholar

    [24]

    葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第245—261页

    Ge D B, Wei B 2011 Electromagnetic Wave Theory (Beijing: Science Press) pp245–261 (in Chinese)

  • 图 1  电偶极子在水平分层受限空间中的辐射示意图

    Fig. 1.  Radiation diagram of an electric dipole in the horizontal layered confined space.

    图 2  下界面上方80 m处频率为100 kHz的电偶极子立体辐射方向图($ \theta \in \left({76.5}^{\circ }, {90}^{\circ }\right) $) (a) 垂直偶极子; (b) 水平偶极子; (c) ${\theta _0}{{ = \pi }}/4, {\text{ }}{\varphi _0}{{ = \pi }}/4$的偶极子

    Fig. 2.  Radiation pattern of an electric dipole located at 80 m high above the lower interface as the frequency is 100 kHz ($ \theta \in \left({76.5}^{\circ }, {90}^{\circ }\right) $): (a) Vertical dipole; (b) horizontal dipole; (c)${\theta _0}{{ = \pi }}/4, {\text{ }}{\varphi _0}{{ = \pi }}/4$ dipole.

    图 3  下界面上方80 m处频率为6 MHz的电偶极子立体辐射方向图 (a) 垂直偶极子; (b) 水平偶极子; (c) ${\theta _0}{{ = \pi }}/4, {\text{ }}{\varphi _0}{{ = \pi }}/4$的偶极子

    Fig. 3.  Radiation pattern of an electric dipole located at 80 m high above the lower interface as the frequency is 6 MHz: (a) Vertical dipole; (b) horizontal dipole; (c)${\theta _0}{{ = \pi }}/4, {\text{ }}{\varphi _0}{{ = \pi }}/4$ dipole.

    图 4  下界面上方80 m处频率为10 MHz的电偶极子立体辐射方向图 (a) 垂直偶极子; (b) 水平偶极子; (c) ${\theta _0}{{ = \pi }}/4, {\text{ }}{\varphi _0}{{ = \pi }}/4$的偶极子

    Fig. 4.  Radiation pattern of an electric dipole located at 80 m high above the lower interface as the frequency is 10 MHz: (a) Vertical dipole; (b) horizontal dipole; (c)${\theta _0}{{ = \pi }}/4, {\text{ }}{\varphi _0}{{ = \pi }}/4$ dipole.

    图 5  频率为6 MHz的水平电偶极子于下界面上方不同高度时的立体辐射方向图 (a) h = 25 m; (b) h = 50 m; (c) h = 100 m

    Fig. 5.  Radiation pattern of a horizontal electric dipole located at different heights above the lower interface as the frequency is 6 MHz: (a) h = 25 m; (b) h = 50 m; (c) h = 100 m.

    图 6  频率为6 MHz的垂直电偶极子放置在不同空间环境时的辐射方向图

    Fig. 6.  Radiation pattern of a vertical electric dipole located at different space environments at a frequency of 6 MHz.

    Baidu
  • [1]

    李凯 2010 分层介质中的电磁场和电磁波 (杭州: 浙江大学出版社) 第21—85页

    Li K 2010 Electromagnetic Fields and Waves in Layered Media (Hangzhou: Zhejiang University Press) pp21–85 (in Chinese)

    [2]

    吴静, 周志为, 闫旭 2015 64 194101Google Scholar

    Wu J, Zhou Z W, Yan X 2015 Acta Phys. Sin. 64 194101Google Scholar

    [3]

    张歆, 童昱泽, 田志颖, 王金洪, 姚泽 2020 69 248401Google Scholar

    Zhang X, Tong Y Z, Tian Z Y, Wang J H, Yao Z 2020 Acta Phys. Sin. 69 248401Google Scholar

    [4]

    王宏磊 2016 博士学位论文 (西安: 西北工业大学)

    Wang H L 2016 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [5]

    Zeng H R, He T, Li K 2021 IEEE Trans. Antennas Propag. 69 5870Google Scholar

    [6]

    Sommerfeld A 1909 Ann. Phys. 28 665

    [7]

    Nazari M E, Huang W M 2020 IEEE Trans. Antennas Propag. 68 1181Google Scholar

    [8]

    Wang J H, Li B 2017 IEEE Trans. Antennas Propag. 65 2707Google Scholar

    [9]

    Wait J R 1966 IEEE Trans. Antennas Propag. 14 790Google Scholar

    [10]

    King R W P, Sandler S S 1994 IEEE Trans. Antennas Propag. 42 382Google Scholar

    [11]

    Zhang H Q, Pan W Y 2002 Radio Sci. 37 1Google Scholar

    [12]

    Collin R E 2002 Electromagentic Wave Theory (Beijing: Higher Education Press) pp219–328

    [13]

    洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达 2012 61 160302Google Scholar

    Hong Q Q, Zhong W B, Yu Y Z, Cai Z S, Chen M S, Lin S D 2012 Acta Phys. Sin. 61 160302Google Scholar

    [14]

    潘威炎 2004 长波超长波极长波传播 (成都: 电子科技大学出版社) 第40—80页

    Pan W Y 2004 Long Wave Ultra Long Wave Very Long Wave Propagation (Chengdu: University of Electronic Science and Technology Press) pp40–80 (in Chinese)

    [15]

    陈聪, 李定国, 蒋治国, 刘华波 2012 61 244101Google Scholar

    Chen C, Li D G, Jiang Z G Liu H B 2012 Acta Phys. Sin. 61 244101Google Scholar

    [16]

    He L N, He T, Li K 2020 Int. J. Antenn. Propag. 2020 1Google Scholar

    [17]

    朱秀芹, 潘威炎, 官伯然 2009 电波科学学报 24 71Google Scholar

    Zhu X Q, Pan W Y, Guan B R 2009 Chin. J. Radio Sci. 24 71Google Scholar

    [18]

    顾婷婷 2019 博士学位论文 (杭州: 浙江大学)

    Gu T T 2019 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [19]

    Gao Y, Di Q Y, Wang R, Fu C M, Liang P F, Zheng F H 2021 IEEE Trans. Geosci. Remote Sens. 60 1Google Scholar

    [20]

    Zhao S F, Zhang X M, Zhao Z Y, Shen X H 2014 Ann. Geophys. 32 194Google Scholar

    [21]

    葛德彪, 魏兵 2012 61 050301Google Scholar

    Ge D B, Wei B 2012 Acta Phys. Sin. 61 050301Google Scholar

    [22]

    Cao L, Wei B, Ge D B 2013 Waves Random Complex Media 23 446Google Scholar

    [23]

    Shen N, Wei B, Yin W K 2019 Results Phys. 14 102388Google Scholar

    [24]

    葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第245—261页

    Ge D B, Wei B 2011 Electromagnetic Wave Theory (Beijing: Science Press) pp245–261 (in Chinese)

  • [1] 许琳茜, 朱榕琪, 朱竹青, 贡丽萍, 顾兵. 单轴晶体中产生的高纯度纵向针形磁化场.  , 2022, 71(14): 147801. doi: 10.7498/aps.71.20220316
    [2] 谢前朋, 潘小义, 陈吉源, 肖顺平. 基于长电偶极子和大磁圆环的新型电磁矢量传感器双基地多输入多输出雷达角度和极化参数联合估计.  , 2021, 70(4): 044302. doi: 10.7498/aps.70.20201111
    [3] 杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐. 基于宽波束磁电偶极子天线的宽角扫描线性相控阵列.  , 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [4] 张晨, 曹祥玉, 高军, 李思佳, 郑月军. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线.  , 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [5] 王飞, 魏兵, 杨谦, 李林茜. 基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析.  , 2014, 63(16): 164101. doi: 10.7498/aps.63.164101
    [6] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法.  , 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [7] 陈聪, 李定国, 蒋治国, 刘华波. 二次等效法求三层媒质中静态电偶极子的场分布.  , 2012, 61(24): 244101. doi: 10.7498/aps.61.244101
    [8] 洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达. 电偶极子在磁各向异性介质中的辐射功率.  , 2012, 61(16): 160302. doi: 10.7498/aps.61.160302
    [9] 葛德彪, 魏兵. 互易定理计算分层半空间上方任意取向偶极子的远区场.  , 2012, 61(5): 050301. doi: 10.7498/aps.61.050301
    [10] 陈科, 尤云祥, 胡天群, 朱敏慧, 王小青. 分层流体中移动动量源生成准二维偶极子涡街特性实验.  , 2011, 60(2): 024702. doi: 10.7498/aps.60.024702
    [11] 马建立, 张鹤鸣, 宋建军, 王冠宇, 王晓艳. (001)面任意方向单轴应变硅材料能带结构.  , 2011, 60(2): 027101. doi: 10.7498/aps.60.027101
    [12] 杨一鸣, 屈绍波, 王甲富, 赵静波, 柏鹏, 李哲, 夏颂, 徐卓. 基于介质谐振器原理的左手材料设计.  , 2011, 60(7): 074201. doi: 10.7498/aps.60.074201
    [13] 王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈 军. 宏观电偶极子对聚丙烯铁电驻极体膜电荷储存及其动态特性的影响.  , 2007, 56(10): 6061-6067. doi: 10.7498/aps.56.6061
    [14] 王海龙, 吴 群, 李乐伟, 吴 健, 孟繁义. 垂直电偶极子在球外侧电磁场的闭合解及验证.  , 2007, 56(1): 195-200. doi: 10.7498/aps.56.195
    [15] 吴重庆, 赵 爽. 电偶极子源定位问题的研究.  , 2007, 56(9): 5180-5184. doi: 10.7498/aps.56.5180
    [16] 肖春燕, 雷银照. 分层球形导体中任意位置直流电流元产生电位的解析解.  , 2005, 54(4): 1950-1957. doi: 10.7498/aps.54.1950
    [17] 张春福, 郝 跃, 游海龙, 张金凤, 周小伟. 界面电偶极子对GaN/AlGaN/GaN光电探测器紫外/太阳光选择比的影响.  , 2005, 54(8): 3810-3814. doi: 10.7498/aps.54.3810
    [18] 陈 莹, 邱锡钧. 细胞骨架微管中水的电偶极集体辐射.  , 2003, 52(6): 1554-1560. doi: 10.7498/aps.52.1554
    [19] 贺奇才, 黄耀熊. 平面电磁波在任意方向运动的介质-介质界面上的反射和透射.  , 1999, 48(6): 1044-1051. doi: 10.7498/aps.48.1044
    [20] 刘付德, 凌志远, 熊茂仁. 固体介质中电偶极子介电常数温度特性与能级密度分布关系.  , 1995, 44(8): 1302-1309. doi: 10.7498/aps.44.1302
计量
  • 文章访问数:  4031
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 修回日期:  2022-07-08
  • 上网日期:  2022-10-20
  • 刊出日期:  2022-10-20

/

返回文章
返回
Baidu
map