搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弛豫铁电体弥散相变与热滞效应的伊辛模型

黄建邦 南虎 张锋 张佳乐 刘来君 王大威

引用本文:
Citation:

弛豫铁电体弥散相变与热滞效应的伊辛模型

黄建邦, 南虎, 张锋, 张佳乐, 刘来君, 王大威

Diffuse phase transition and thermal hysteresis in relaxor ferroelectrics from modified Ising model

Huang Jian-Bang, Nan Hu, Zhang Feng, Zhang Jia-Le, Liu Lai-Jun, Wang Da-Wei
PDF
HTML
导出引用
  • 弛豫铁电体材料在通讯、传感、超声、能量转换、航空航天等领域具有重要的应用. 与正常铁电体不同, 弛豫铁电体在冷却过程中出现弥散相变, 体系的宏观极化不会突然产生, 而是出现纳米极性微区, 体系的宏观晶体对称性没有明显的变化. 如何理解弥散相变及其与内部机制之间的相互影响是一个重要的问题. 本研究基于伊辛模型(Ising model), 对自旋变量(在研究中视为电偶极子)引入能量势阱的作用, 并计算了这一系统的相变过程. 结果表明这一改进的伊辛模型使极化率的相变曲线显著变缓, 呈现出具有弥散相变的弛豫体特性. 研究显示, 弛豫体现象出现的一个重要原因是系统内部偶极子受到势阱限制而出现反转受阻, 从而使极化率偏离常规铁电体. 利用这一改进的伊辛模型进一步研究了弛豫铁电体的热滞效应, 分析了热滞的起源, 并与实验结果进行了对比分析, 明确了弛豫体弥散相变和热滞的物理机制.
    Relaxor ferroelectric is a very special type of ferroelectric material, which has important applications in communication, sensor, ultrasound, energy conversion, and aerospace industry. Unlike normal ferroelectric, a relaxor undergoes a diffuse phase transition in the cooling process, and its macroscopic polarization does not occur suddenly, but polar nano region appears while the macro-symmetry does not change significantly. As the transition from the paraelecric to the ferroelectric phase is a gradual process with a broad dielectric peak, relaxor ferroelectric has no definite Curie temperature (TC), and the temperature corresponding to the maximum dielectric constant (Tm) and the Burns temperature (TB) are often used as their characteristic temperatures. Here, in order to understand the diffuse phase transition and its internal mechanism, we build a modified Ising model by introducing an energy potential well that affects the spin variable (which is regarded as electric dipole in this research) and simulate the phase transition process using this model, which results in significantly smoothed phase transition with respect to temperature, exhibiting relaxor characteristics with diffuse phase transitions. More precisely, it is found that by applying the energy potential well to the dipoles in the system, the ferroelectric phase transition can be significantly broadened, that is, a diffused phase transition appears, showing strong relaxation characteristics that, as the temperature gradually increases, the average electric dipole moment does not change abruptly while the peak value of its permittivity decreases with the energy potential well. Moreover, at a temperature much higher than the transition temperature of the usual Ising model, the system can still maintain a certain polarization, which is in line with relaxor characteristics. By comparing to a previously proposed statistical model, it is found that the relaxation phenomenon is due to the fact that dipoles in the system are constrained by the given potential well, therefore difficult to flip, making the overall polarizability deviate from that of conventional ferroelectrics. Our results therefore show that the existence of dipole energy potential well is an important factor in the relaxation phenomenon of ferroelectric. This modified Ising model, which accounts for the constrained dipoles statistically, is then used to investigate the thermal hysteresis effect of relaxor ferroelectrics in order to understand its origin. By comparing to experimental results, we are able to clarify the physics of the thermal hysteresis of relaxor ferroelectric, deepening our understanding from the theoretical and simulation perspective.
      通信作者: 刘来君, ljliu2@163.com ; 王大威, dawei.wang@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974268, 11574246)和广西自然科学基金(批准号: AA138162, AA294014, GA245006)资助的课题
      Corresponding author: Liu Lai-Jun, ljliu2@163.com ; Wang Da-Wei, dawei.wang@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974268, 11574246) and the Natural Science Foundation of Guangxi, China (Grant Nos. AA138162, AA294014, GA245006)
    [1]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804Google Scholar

    [2]

    Service R F 1997 Science 275 1878Google Scholar

    [3]

    Zhang S J, Li F 2012 J. Appl. Phys. 111 031301Google Scholar

    [4]

    Bokov A A, Maglione M, Ye Z G 2007 J. Phys. Condens. Matter 19 092001Google Scholar

    [5]

    Fu H X, Cohen R E 2000 Nature 403 281Google Scholar

    [6]

    Zhang S J, Li F, Jiang X N, Kim J, Luo J, Geng X C 2015 Prog. Mater. Sci. 68 1Google Scholar

    [7]

    Sun E W, Cao W W 2014 Prog. Mater. Sci. 65 124Google Scholar

    [8]

    Ye Z G 2009 MRS Bull. 34 277Google Scholar

    [9]

    Liu J, Li F, Zeng Y, Jiang Z, Liu L, Wang D, Ye Z G, Jia C L 2017 Phys. Rev. B 96 054115Google Scholar

    [10]

    Colla E V, Koroleva E Y, Okuneva N M, Vakhrushev S B 1992 J. Phys. Condens. Matter 4 3671Google Scholar

    [11]

    Manley M E, Lynn J W, Abernathy D L, Specht E D, Delaire O, Bishop A R, Sahul R, Budai J D 2014 Nat. Commun. 5 3683Google Scholar

    [12]

    Wang D, Bokov A A, Ye Z G, Hlinka J, Bellaiche L 2016 Nat. Commun. 7 11014Google Scholar

    [13]

    Sherrington D 2013 Phys. Rev. Lett. 111 227601Google Scholar

    [14]

    Sherrington D 2014 Phys. Rev. B 89 064105Google Scholar

    [15]

    Noheda B 2002 Curr. Opin. Solid State Mater. Sci. 6 27Google Scholar

    [16]

    Jin Y M, Wang Y U, Khachaturyan A G, Li J F, Viehland D 2003 Phys. Rev. Lett. 91 197601Google Scholar

    [17]

    Kleemann W 2014 Phys. Status Solidi B 251 1993Google Scholar

    [18]

    Jeong I K, Darling T W, Lee J K, Proffen T, Heffner R H, Park J S, Hong K S, Dmowski W, Egami T 2005 Phys. Rev. Lett. 94 147602Google Scholar

    [19]

    Hiraka H, Lee S H, Gehring P M, Xu G Y, Shirane G 2004 Phys. Rev. B 70 184105Google Scholar

    [20]

    Xie L, Li Y L, Yu R, Cheng Z Y, Wei X Y, Yao X, Jia C L, Urban K, Bokov A A, Ye Z G, Zhu J 2012 Phys. Rev. B 85 014118Google Scholar

    [21]

    Akbarzadeh A R, Prosandeev S, Walter E J, Al-Barakaty A, Bellaiche L 2012 Phys. Rev. Lett. 108 257601Google Scholar

    [22]

    Xu G, Wen J, Stock C, Gehring P M 2008 Nat. Mater. 7 562Google Scholar

    [23]

    Manley M E, Abernathy D L, Sahul R, Parshall D E, Lynn J W, Christianson A D, Stonaha P J, Specht E D, Budai J D 2016 Sci. Adv. 2 1501814Google Scholar

    [24]

    Li F, Zhang S J, Yang T N, Xu Z, Zhang N, Liu G, Wang J J, Wang J L, Cheng Z X, Ye Z G, Luo J, Shrout T R, Chen L Q 2016 Nat. Commun. 7 13807Google Scholar

    [25]

    Tinte S, Burton B P, Cockayne E, Waghmare U V 2006 Phys. Rev. Lett. 97 137601Google Scholar

    [26]

    Pasciak M, Welberry T R, Kulda J, Kempa M, Hlinka J 2012 Phys. Rev. B 85 224109Google Scholar

    [27]

    Takenaka H, Grinberg I, Rappe A M 2013 Phys. Rev. Lett. 110 147602Google Scholar

    [28]

    Grinberg I, Shin Y H, Rappe A M 2009 Phys. Rev. Lett. 103 197601Google Scholar

    [29]

    Sepliarsky M, Cohen R E 2011 J. Phys.Condens. Matter 23 435902Google Scholar

    [30]

    Adam L, Tsuyoshi H, Dorota L 1995 Phys. Rev. Lett. 74 3888Google Scholar

    [31]

    Newman M E J, Barkema G T 1999 Monte Carlo Methods in Statistical Physics (Oxford: Oxford University Press) p17

    [32]

    Liu L, Ren S, Zhang J, Peng B, Fang L, Wang D 2018 J. Am. Ceram. Soc. 101 2408Google Scholar

    [33]

    Prosandeev S, Wang D, Akbarzadeh A R, Bellaiche L 2015 J. Phys.Condens. Matter 27 223202Google Scholar

    [34]

    Prosandeev S, Wang D, Akbarzadeh A, Dkhil B, Bellaiche L 2013 Phys. Rev. Lett. 110 207601Google Scholar

    [35]

    Liu Y, Phillips L C, Mattana R, Bibes M, Barthelemy A, Dkhil B 2016 Nat. Commun. 7 11614Google Scholar

    [36]

    Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439Google Scholar

    [37]

    Burns G, Dacol F H 1983 Phys. Rev. B 28 2527Google Scholar

    [38]

    Liu Y, Haibibu A, Xu W H, Han Z B, Wang Q 2020 Adv. Funct. Mater. 30 2000648Google Scholar

    [39]

    Westphal V, Kleemann W, Glinchuk M D 1992 Phys. Rev. Lett. 68 847Google Scholar

  • 图 3  升温过程与降温过程电极化率随温度变化的拟合, 实线为(9)式的拟合结果 (a) 升温过程; (b) 降温过程

    Fig. 3.  The fitting of the electrical polarization with the temperature during the heating process and the cooling process, the solid line is the fitting result of Eq. (9): (a) Heating process; (b) cooling process

    图 1  平均电偶极矩随温度的变化 (a) 初始态为极化状态的升温过程; (b) 初始态随机状态的降温过程

    Fig. 1.  Temperature dependence of the average electric dipole moment: (a) Heating process from the initial state with all dipoles being +1; (b) cooling process from the initial state with random dipoles.

    图 2  不同能量势阱下电极化率随温度的变化 (a) 无能量势阱, 初始态为极化态的升温过程; (b) 存在能量势阱, 初始态为极化态的升温过程; (c) 存在能量势阱, 初始态为随机态的降温过程

    Fig. 2.  Polarizability versus temperature with different $ {E}_{\mathrm{B}}: $ (a) Heating process from an initial state with all dipoles being +1 for EB = 0; (b) heating process from an initial state with all dipoles being +1 with nonzero EB; (c) cooling process from an initial state with random dipoles with nonzero EB

    图 4  升温和降温过程极化率随温度变化的对比

    Fig. 4.  Polarizability as a function of temperature in heating/cooling processes.

    图 5  $ {E}_{\mathrm{B}}=0.5 $时, 不同过程中平均电偶极矩 (a) 极化率(b)随温度变化的对比

    Fig. 5.  Average electric dipole moments (a) and polarizability (b) as functions of temperature during different processes for $ {E}_{\mathrm{B}}=0.5 $.

    表 1  使用(9)式拟合电极化率的参数结果

    Table 1.  Polarizability fitting parameters with using Eq. (9).

    $ {E}_{\mathrm{B}} $
    (设置值)
    $ {\chi }_{1} $$ \gamma $$ \theta $$ {E}_{\mathrm{B}} $
    (拟合值)
    $ {\chi }_{2} $$ {T}_{\mathrm{O}} $
    升温
    过程
    12.2001.781.8992.31402.681
    20.6531.403.1692.65303.092
    50.2991.396.0806.91502.408
    降温
    过程
    11.671.4901.652.66003.537
    20.631.3543.073.40003.621
    50.161.74011.324.28002.290
    下载: 导出CSV
    Baidu
  • [1]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804Google Scholar

    [2]

    Service R F 1997 Science 275 1878Google Scholar

    [3]

    Zhang S J, Li F 2012 J. Appl. Phys. 111 031301Google Scholar

    [4]

    Bokov A A, Maglione M, Ye Z G 2007 J. Phys. Condens. Matter 19 092001Google Scholar

    [5]

    Fu H X, Cohen R E 2000 Nature 403 281Google Scholar

    [6]

    Zhang S J, Li F, Jiang X N, Kim J, Luo J, Geng X C 2015 Prog. Mater. Sci. 68 1Google Scholar

    [7]

    Sun E W, Cao W W 2014 Prog. Mater. Sci. 65 124Google Scholar

    [8]

    Ye Z G 2009 MRS Bull. 34 277Google Scholar

    [9]

    Liu J, Li F, Zeng Y, Jiang Z, Liu L, Wang D, Ye Z G, Jia C L 2017 Phys. Rev. B 96 054115Google Scholar

    [10]

    Colla E V, Koroleva E Y, Okuneva N M, Vakhrushev S B 1992 J. Phys. Condens. Matter 4 3671Google Scholar

    [11]

    Manley M E, Lynn J W, Abernathy D L, Specht E D, Delaire O, Bishop A R, Sahul R, Budai J D 2014 Nat. Commun. 5 3683Google Scholar

    [12]

    Wang D, Bokov A A, Ye Z G, Hlinka J, Bellaiche L 2016 Nat. Commun. 7 11014Google Scholar

    [13]

    Sherrington D 2013 Phys. Rev. Lett. 111 227601Google Scholar

    [14]

    Sherrington D 2014 Phys. Rev. B 89 064105Google Scholar

    [15]

    Noheda B 2002 Curr. Opin. Solid State Mater. Sci. 6 27Google Scholar

    [16]

    Jin Y M, Wang Y U, Khachaturyan A G, Li J F, Viehland D 2003 Phys. Rev. Lett. 91 197601Google Scholar

    [17]

    Kleemann W 2014 Phys. Status Solidi B 251 1993Google Scholar

    [18]

    Jeong I K, Darling T W, Lee J K, Proffen T, Heffner R H, Park J S, Hong K S, Dmowski W, Egami T 2005 Phys. Rev. Lett. 94 147602Google Scholar

    [19]

    Hiraka H, Lee S H, Gehring P M, Xu G Y, Shirane G 2004 Phys. Rev. B 70 184105Google Scholar

    [20]

    Xie L, Li Y L, Yu R, Cheng Z Y, Wei X Y, Yao X, Jia C L, Urban K, Bokov A A, Ye Z G, Zhu J 2012 Phys. Rev. B 85 014118Google Scholar

    [21]

    Akbarzadeh A R, Prosandeev S, Walter E J, Al-Barakaty A, Bellaiche L 2012 Phys. Rev. Lett. 108 257601Google Scholar

    [22]

    Xu G, Wen J, Stock C, Gehring P M 2008 Nat. Mater. 7 562Google Scholar

    [23]

    Manley M E, Abernathy D L, Sahul R, Parshall D E, Lynn J W, Christianson A D, Stonaha P J, Specht E D, Budai J D 2016 Sci. Adv. 2 1501814Google Scholar

    [24]

    Li F, Zhang S J, Yang T N, Xu Z, Zhang N, Liu G, Wang J J, Wang J L, Cheng Z X, Ye Z G, Luo J, Shrout T R, Chen L Q 2016 Nat. Commun. 7 13807Google Scholar

    [25]

    Tinte S, Burton B P, Cockayne E, Waghmare U V 2006 Phys. Rev. Lett. 97 137601Google Scholar

    [26]

    Pasciak M, Welberry T R, Kulda J, Kempa M, Hlinka J 2012 Phys. Rev. B 85 224109Google Scholar

    [27]

    Takenaka H, Grinberg I, Rappe A M 2013 Phys. Rev. Lett. 110 147602Google Scholar

    [28]

    Grinberg I, Shin Y H, Rappe A M 2009 Phys. Rev. Lett. 103 197601Google Scholar

    [29]

    Sepliarsky M, Cohen R E 2011 J. Phys.Condens. Matter 23 435902Google Scholar

    [30]

    Adam L, Tsuyoshi H, Dorota L 1995 Phys. Rev. Lett. 74 3888Google Scholar

    [31]

    Newman M E J, Barkema G T 1999 Monte Carlo Methods in Statistical Physics (Oxford: Oxford University Press) p17

    [32]

    Liu L, Ren S, Zhang J, Peng B, Fang L, Wang D 2018 J. Am. Ceram. Soc. 101 2408Google Scholar

    [33]

    Prosandeev S, Wang D, Akbarzadeh A R, Bellaiche L 2015 J. Phys.Condens. Matter 27 223202Google Scholar

    [34]

    Prosandeev S, Wang D, Akbarzadeh A, Dkhil B, Bellaiche L 2013 Phys. Rev. Lett. 110 207601Google Scholar

    [35]

    Liu Y, Phillips L C, Mattana R, Bibes M, Barthelemy A, Dkhil B 2016 Nat. Commun. 7 11614Google Scholar

    [36]

    Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439Google Scholar

    [37]

    Burns G, Dacol F H 1983 Phys. Rev. B 28 2527Google Scholar

    [38]

    Liu Y, Haibibu A, Xu W H, Han Z B, Wang Q 2020 Adv. Funct. Mater. 30 2000648Google Scholar

    [39]

    Westphal V, Kleemann W, Glinchuk M D 1992 Phys. Rev. Lett. 68 847Google Scholar

  • [1] 杜啸颖, 俞振华. 分形格点中伊辛模型的临界行为.  , 2023, 72(8): 080503. doi: 10.7498/aps.72.20222432
    [2] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤.  , 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] 江璐冰, 李宁轩, 吉凯. 周期驱动量子伊辛模型中非热统计的形成与抑制.  , 2020, 69(14): 140501. doi: 10.7498/aps.69.20191657
    [4] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响.  , 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [5] 杨波, 范敏, 刘文奇, 陈晓松. 自我质疑机制下公共物品博弈模型的相变特性.  , 2017, 66(19): 196401. doi: 10.7498/aps.66.196401
    [6] 屈少华, 曹万强. 球形无规键无规场模型研究弛豫铁电体极化效应.  , 2014, 63(4): 047701. doi: 10.7498/aps.63.047701
    [7] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟.  , 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [8] 王琪, 王晓茜. 一维倾斜场伊辛模型中的纠缠特性.  , 2013, 62(22): 220301. doi: 10.7498/aps.62.220301
    [9] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究.  , 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [10] 尚勋忠, 陈威, 曹万强. 弛豫铁电体介电可调性的研究.  , 2012, 61(21): 217701. doi: 10.7498/aps.61.217701
    [11] 张晋鲁, 李玉强, 赵兴宇, 黄以能. 用Weiss分子场理论对有外电场时铁电体系相变特征的研究.  , 2012, 61(14): 140501. doi: 10.7498/aps.61.140501
    [12] 赵兴宇, 王丽娜, 樊小辉, 张丽丽, 卫来, 张晋鲁, 黄以能. 玻璃化转变的分子串模型中分子串弛豫模式的计算机模拟.  , 2011, 60(3): 036403. doi: 10.7498/aps.60.036403
    [13] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟.  , 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [14] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析.  , 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [15] 宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平. (1-x)(K0.5Na0.5)NbO3-xSrTiO3陶瓷的弛豫铁电性能.  , 2009, 58(7): 4980-4986. doi: 10.7498/aps.58.4980
    [16] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用.  , 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [17] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用.  , 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [18] 周 静, 赵 然, 陈 文. xPMnS-(1-x)PZN陶瓷的相变特性研究.  , 2006, 55(6): 2815-2819. doi: 10.7498/aps.55.2815
    [19] 王世奇, 连贵君, 熊光成. La0.7Ca0.3MnO3和CeO2混合块状样品电输运性质及使用分形迭代电阻网络模型的计算模拟.  , 2005, 54(8): 3815-3821. doi: 10.7498/aps.54.3815
    [20] 周云松, 陈金昌, 林多梁. 多层伊辛膜的磁学性质.  , 2000, 49(12): 2477-2481. doi: 10.7498/aps.49.2477
计量
  • 文章访问数:  6834
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2020-12-27
  • 上网日期:  2021-05-31
  • 刊出日期:  2021-06-05

/

返回文章
返回
Baidu
map