搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用离子激发发光研究ZnO离子注入和退火处理的缺陷变化

罗长维 仇猛淋 王广甫 王庭顺 赵国强 华青松

引用本文:
Citation:

利用离子激发发光研究ZnO离子注入和退火处理的缺陷变化

罗长维, 仇猛淋, 王广甫, 王庭顺, 赵国强, 华青松

Ions beam induced luminescence study of variation of defects in zinc oxide during ion implant and after annealing

Luo Chang-Wei, Qiu Meng-Lin, Wang Guang-Fu, Wang Ting-Shun, Zhao Guo-Qiang, Hua Qing-Song
PDF
HTML
导出引用
  • 在北京师范大学GIC4117 2 × 1.7 MV串列加速器上, 利用离子激发发光(ions beam induced luminescence, IBIL)技术研究了2 MeV H+注入ZnO的缺陷变化及473和800 K退火处理对缺陷的恢复作用. 实验表明, 在2 MeV H+的辐照下, 晶体内部产生的点缺陷会快速移动、聚集成团簇, 从而抑制发光. 473 K退火后的受辐照ZnO晶体内仍存在着大量的缺陷和团簇, 而这些缺陷和团簇作为非辐射中心抑制着ZnO晶体的发光. 800 K的退火处理可以显著地分解辐照过程中形成的团簇, 也可以帮助点缺陷回到晶格位置, 从而减少晶体内部的不平衡缺陷, 提高晶体的结晶度, 使退火后的受辐照ZnO样品IBIL光强大幅度增强.
    The optical and electrical properties of ZnO related on the type and the concentration of defects in ZnO crystal. Ion implantation and annealing can change the type and the concentration of defects in ZnO. To understand the variation of defects in ZnO during ion implantation and after different temperature annealing, in situ luminescence measurements of ZnO crystal samples were carried out by ion beam induced luminescence (IBIL) during ion implantation of 2 MeV H+ and then after annealing at 473 K and 800 K in vacuum on the GIC4117 tandem accelerator in Beijing Normal University.IBIL spectra of ZnO showtwo emission peaks: UV emission, which is called near band emission (NBE), and visible emission, which is called deep band emission (DBE).The high-intensity of DBE and weak NBE of IBIL spectra of ZnOmay be due to the NBE is intrinsic to ZnO samples and therefore is just visibly observed from samples that are virtually defect-free. With the ion implantation, the destruction of the crystal structure and the arising of a mass of defects, inducing the weak intensity NBE and intense DBE.In addition, the overall IBIL spectra of ZnOreveal decrease intensity with the ion fluence,which indicates that the concentration of luminescence centersdecreases duringion implantation.With the H+ fluence, the concentration of the point defects increases. The point defects migrate and subsequently agglomerate into larger defect clusters. These defect clusters serve as traps for catching electrons and holes, which result in the quenching of luminescence centres. Annealing can help todecompose the defect clusters and repair the defects of crystal. However, amounts of defects and clusters still remain in the irradiated sample annealed at 473 K in vacuum, which acted as nonradiative center and suppress the luminescence induced weak intensity of IBIL. Annealing the sample at 800 K in vacuum may facilitate the decomposition of defect clusters during ion irradiation to point defects and the point defect return to the lattice position that can reduce the nonequilibrium defects inside the crystal and improve the crystallinity of the crystal, which increase the intensity of its IBIL.
      通信作者: 仇猛淋, 11132018326@bnu.edu.cn ; 王广甫, 88088@bnu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11905010)、中央高校基本科研业务费专项资金(批准号: 2018NTST04)和中国博士后科学基金(批准号: 2019M650526)资助的课题
      Corresponding author: Qiu Meng-Lin, 11132018326@bnu.edu.cn ; Wang Guang-Fu, 88088@bnu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.11905010), the Fundamental Research Funds for the Central Universities, China(Grant No.2018NTST04), and the China Postdoctoral Science Foundation funded project(Grant No.2019M650526)
    [1]

    Huddle J R, Grant P G, Ludington A R, Foster R L 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 261 475Google Scholar

    [2]

    Rodrigues J, Miranda S M C, Peres M, et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 306 201Google Scholar

    [3]

    Zhang X M, Lu M Y, Zhang Y, et al. 2009 Adv. Mater. 21 2767Google Scholar

    [4]

    Li L, Yang H, ZhaoH, Yu J, Ma J, An L 2010 Appl. Phys. A-Mater. Sci. Process. 98 635Google Scholar

    [5]

    Epie E N, Chu W K 2016 Appl. Surf. Sci. 371 28Google Scholar

    [6]

    邢光建, 李钰梅, 江伟, 韩彬, 王怡, 武光明 2009 真空 46 41

    Xing G J, Li Y M, Jiang W, Han B, Wang Y, Wu G M 2009 Vacuum 46 41

    [7]

    Zhou Z, Kato K, Komaki T, Yoshino M, Morinaga M 2004 Int. J. Hydrog. Energy 29 323Google Scholar

    [8]

    潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 60 108501Google Scholar

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501Google Scholar

    [9]

    李重阳, 邱诚, 柳丹, 叶霞, 王栋, 陈志权 2013 武汉大学学报(理学版) 04 96

    Li C Y, Qu C, Liu D, Ye X, Wang D, Chen Z Q 2013 Journal of Wuhan University (Natural Science Edition) 04 96

    [10]

    徐自强, 邓宏, 谢娟, 李燕, 陈航, 祖小涛, 薛书文 2006 强激光与粒子束 18 169

    Xu Z Q, Deng H, Xie J, Li Y, Chen H, Zu X T, Xue S W 2006 High Power Laser Part. Beams HPLPB 18 169

    [11]

    郭德双, 陈子男, 王登魁, 唐吉龙, 方铉, 房丹, 林逢源, 王新伟, 魏志鹏 2019 中国激光 46 0403002Google Scholar

    Guo D S, Chen Z N, Wang D K, Tang J L, Fang X, Fang D, Lin F Y, Wang X W, Wei Z P 2019 Chin. J. Lasers 46 0403002Google Scholar

    [12]

    朱影 2018 硕士学位论文 (杭州: 浙江大学)

    Zhu Y 2018 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [13]

    仇猛淋 2017 中国核学会 中国威海 2017 10月16日—18日 第6页

    Qiu M L 2017 Proceedings of Chinese Nuclear Society Weihai, China, October 16–18, 2017 p6 (in Chinese)

    [14]

    仇猛淋, 王广甫, 褚莹洁, 郑力, 胥密, 殷鹏 2017 66 207801Google Scholar

    Qiu M L, Wang GF, Chu YJ, Zheng L, Xu M, Yin P 2017 Acta Phys. Sin. 66 207801Google Scholar

    [15]

    Cui M, Zhang Z, Wang Y, Finch A, Townsend P D 2018 Luminescence 33 4Google Scholar

    [16]

    Validzic I, Comor M, Ahrenkiel S P, Comor M I 2015 Metall. Mater. Trans. A 46 3679Google Scholar

    [17]

    Trinh T A, Hong I S, Lee H R, Cho Y S 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3535Google Scholar

    [18]

    Chen Z Q, Sekiguchi T, Yuan X L, Maekawa M, KawasusoA 2004 J. Phys.Condens. Matter 16 S293Google Scholar

    [19]

    Hu Y, Xue X, Wu Y 2014 Radiat. Phys. Chem. 101 20Google Scholar

    [20]

    Gruzintsev A N, Yakimov E E 2005 Inorg. Mater. 41 725Google Scholar

  • 图 1  高低温IBIL 装置简图

    Fig. 1.  Schematic of the IBIL experimental setup for high- and low-temperature applications.

    图 2  常温下ZnO的IBIL光谱随离子注量演变情况

    Fig. 2.  The Normalized IBIL spectra of ZnO at various fluences at room temperature.

    图 3  辐照后的样品在473 K退火后的IBIL光谱

    Fig. 3.  The Normalized IBIL of the sample with irradiation by 2 MeV H+ and annealing at 473 K.

    图 4  辐照后的样品在800 K退火后的IBIL光谱

    Fig. 4.  The Normalized IBIL of the sample with irradiation by 2 MeV H+ and annealing at 800 K.

    图 5  473 K和800 K退火后的样品的NBE强度随离子注量的演变情况

    Fig. 5.  Evolutions of the luminescence peak intensitiesof NBE with the irradiation fluence at annealingtemperatures of 473 K and 800 K for irradiated samples.

    图 6  473 K真空退火3 h后的样品的IBIL光谱

    Fig. 6.  The Normalized IBIL of the sample with annealing at 473 K in vacuum for 3 h.

    图 7  473 K真空退火3 h后再辐照的样品, 在800 K真空退火3 h后的IBIL光谱

    Fig. 7.  The Normalized IBIL of the sample annealed at 473 K in vacuum for 3 h was irradiated by 2 MeV H+, and then was annealed at 800 K in vacuum in vacuum for 3 h.

    图 8  473 K退火和473 K退火后辐照, 再800 K退火的样品的NBE强度随离子注量的演变情况

    Fig. 8.  Evolutions of the luminescence peak intensities of NBE with the irradiation fluence at annealing temperatures of 473 K for virgin samples and annealing temperature of 800 K for irradiated samples which has been annealed at 473 K.

    Baidu
  • [1]

    Huddle J R, Grant P G, Ludington A R, Foster R L 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 261 475Google Scholar

    [2]

    Rodrigues J, Miranda S M C, Peres M, et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 306 201Google Scholar

    [3]

    Zhang X M, Lu M Y, Zhang Y, et al. 2009 Adv. Mater. 21 2767Google Scholar

    [4]

    Li L, Yang H, ZhaoH, Yu J, Ma J, An L 2010 Appl. Phys. A-Mater. Sci. Process. 98 635Google Scholar

    [5]

    Epie E N, Chu W K 2016 Appl. Surf. Sci. 371 28Google Scholar

    [6]

    邢光建, 李钰梅, 江伟, 韩彬, 王怡, 武光明 2009 真空 46 41

    Xing G J, Li Y M, Jiang W, Han B, Wang Y, Wu G M 2009 Vacuum 46 41

    [7]

    Zhou Z, Kato K, Komaki T, Yoshino M, Morinaga M 2004 Int. J. Hydrog. Energy 29 323Google Scholar

    [8]

    潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 60 108501Google Scholar

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501Google Scholar

    [9]

    李重阳, 邱诚, 柳丹, 叶霞, 王栋, 陈志权 2013 武汉大学学报(理学版) 04 96

    Li C Y, Qu C, Liu D, Ye X, Wang D, Chen Z Q 2013 Journal of Wuhan University (Natural Science Edition) 04 96

    [10]

    徐自强, 邓宏, 谢娟, 李燕, 陈航, 祖小涛, 薛书文 2006 强激光与粒子束 18 169

    Xu Z Q, Deng H, Xie J, Li Y, Chen H, Zu X T, Xue S W 2006 High Power Laser Part. Beams HPLPB 18 169

    [11]

    郭德双, 陈子男, 王登魁, 唐吉龙, 方铉, 房丹, 林逢源, 王新伟, 魏志鹏 2019 中国激光 46 0403002Google Scholar

    Guo D S, Chen Z N, Wang D K, Tang J L, Fang X, Fang D, Lin F Y, Wang X W, Wei Z P 2019 Chin. J. Lasers 46 0403002Google Scholar

    [12]

    朱影 2018 硕士学位论文 (杭州: 浙江大学)

    Zhu Y 2018 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [13]

    仇猛淋 2017 中国核学会 中国威海 2017 10月16日—18日 第6页

    Qiu M L 2017 Proceedings of Chinese Nuclear Society Weihai, China, October 16–18, 2017 p6 (in Chinese)

    [14]

    仇猛淋, 王广甫, 褚莹洁, 郑力, 胥密, 殷鹏 2017 66 207801Google Scholar

    Qiu M L, Wang GF, Chu YJ, Zheng L, Xu M, Yin P 2017 Acta Phys. Sin. 66 207801Google Scholar

    [15]

    Cui M, Zhang Z, Wang Y, Finch A, Townsend P D 2018 Luminescence 33 4Google Scholar

    [16]

    Validzic I, Comor M, Ahrenkiel S P, Comor M I 2015 Metall. Mater. Trans. A 46 3679Google Scholar

    [17]

    Trinh T A, Hong I S, Lee H R, Cho Y S 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3535Google Scholar

    [18]

    Chen Z Q, Sekiguchi T, Yuan X L, Maekawa M, KawasusoA 2004 J. Phys.Condens. Matter 16 S293Google Scholar

    [19]

    Hu Y, Xue X, Wu Y 2014 Radiat. Phys. Chem. 101 20Google Scholar

    [20]

    Gruzintsev A N, Yakimov E E 2005 Inorg. Mater. 41 725Google Scholar

  • [1] 徐大庆, 张义门, 娄永乐, 童军. 热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响.  , 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [2] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究.  , 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [3] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性.  , 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [4] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒.  , 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [5] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究.  , 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [6] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究.  , 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [7] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应.  , 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [8] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质.  , 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [9] 周丽宏, 张崇宏, 李炳生, 杨义涛, 宋 银. 注入Ar+的蓝宝石晶体退火前后光致发光谱的分析.  , 2008, 57(4): 2562-2566. doi: 10.7498/aps.57.2562
    [10] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究.  , 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [11] 常艳玲, 张琦锋, 孙 晖, 吴锦雷. ZnO纳米线双绝缘层结构电致发光器件制备及特性研究.  , 2007, 56(4): 2399-2404. doi: 10.7498/aps.56.2399
    [12] 刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战. 固相反应法制备Co掺杂ZnO的磁性和光学性能研究.  , 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [13] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响.  , 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [14] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究.  , 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [15] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究.  , 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [16] 袁洪涛, 张 跃, 谷景华. 原位生长高度定向ZnO晶须.  , 2004, 53(2): 646-650. doi: 10.7498/aps.53.646
    [17] 张 丽, 蒋昌忠, 任 峰, 陈海波, 石 瑛, 付 强. Ag-Cu离子注入玻璃后不同气氛退火的光吸收研究.  , 2004, 53(9): 2910-2914. doi: 10.7498/aps.53.2910
    [18] 张德恒, 王卿璞, 薛忠营. 不同衬底上的ZnO薄膜紫外光致发光.  , 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [19] 方泽波, 龚恒翔, 刘雪芹, 徐大印, 黄春明, 王印月. 退火对多晶ZnO薄膜结构与发光特性的影响.  , 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [20] 杨秀健, 施朝淑, 许小亮. 纳米ZnO和ZnO∶Eu3+的表面效应及发光特性.  , 2002, 51(12): 2871-2874. doi: 10.7498/aps.51.2871
计量
  • 文章访问数:  7802
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2020-03-13
  • 刊出日期:  2020-05-20

/

返回文章
返回
Baidu
map