搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率垂直外腔面发射半导体激光器增益设计及制备

张继业 张建伟 曾玉刚 张俊 宁永强 张星 秦莉 刘云 王立军

引用本文:
Citation:

高功率垂直外腔面发射半导体激光器增益设计及制备

张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军

Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication

Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun
PDF
HTML
导出引用
  • 垂直外腔面发射半导体激光器(vertical external cavity surface emitting laser, VECSEL)兼具高功率与良好的光束质量, 是半导体激光器领域的持续研究热点之一. 本文开展了光抽运VECSEL最核心的多量子阱增益区设计, 对量子阱增益光谱及其峰值增益与载流子浓度及温度等关系进行系统的理论优化, 并对5种不同势垒构型的量子阱增益特性进行对比, 证实采用双侧GaAsP应变补偿的发光区具有更理想的增益特性. 对MOCVD生长的VECSEL进行器件制备, 实现了VECSEL在抽运功率为35 W时输出功率达到9.82 W, 并且功率曲线仍然没有饱和; 通过变化外腔镜的反射率, VECSEL的激光波长随抽运功率的漂移系数由0.216 nm/W降低至0.16 nm/W, 证实外腔镜反射率会影响VECSEL增益芯片内部热效应, 从而影响VECSEL激光输出功率. 所制备VECSEL在两正交方向上的发散角分别为9.2°和9.0°, 激光光斑呈现良好的圆形对称性.
    The vertical external cavity surface emitting laser (VECSEL) is one of the hottest research fields of semiconductor lasers, due to its high power and good beam quality. However, there are few reports about how to systematically design the active region of VECSEL. In this paper, the gain design of quantum wells, which are the most important region within the VECSEL, is carried out. To achieve low power consumption under high temperature condition, epitaxial structure of the VECSEL is optimized by using the commercial software PICS3D. Firstly, the relationship between the structure of quantum well and the gain is simulated by the k·p method. Then, the gain spectra of quantum wells at different carrier densities and temperatures are compared with each other, and the optimal composition and thickness of quantum well are thus determined. The temperature drift coefficient is 0.36 nm/K, obtained by simulating the drift of the gain peak wavelength at the working temperature. Finally, the gain spectra of quantum wells with five different barriers are compared with each other. The slight blue shift of the gain peak in the quantum well with five different barriers accommodates the different emission thermal drifts of the quantum well at high temperature operation. With the GaAsP barriers on both sides of quantum well the gain characteristics of quantum wells can be improved efficiently. The designed structure is deposited by the MOCVD system. According to the reflection spectrum of the gain chip, measured by ellipsometer, the stop-band over 100 nm is centered at the about 970 nm wavelength, confirming accurate growth of the VECSEL. The 808 nm pump laser is focused on the surface of VECSEL chip at an incident angle from 30° to 50°. The VECSEL light-light characteristics are tested under the output coupling mirror with different reflectivity. The output power of VECSEL with a 97.7% reflectance output coupling mirror reaches 9.82 W at the pumping power of 35 W, without saturating the power curve. By using the external mirrors with different reflectivity, there appears the wavelength shift with the pumping power changing from 0.216 nm/W to 0.16 nm/W. Thus, the internal heating effects are different for VECSEL with different mirrors. The divergence angles at two orthogonal directions are 9.2° and 9.0°, respectively. And the circle profile of optical field shows good symmetry.
      通信作者: 张建伟, zjw1985@ciomp.ac.cn
    • 基金项目: 国家级-国家重点研发计划项目(2017YFB0503200)
      Corresponding author: Zhang Jian-Wei, zjw1985@ciomp.ac.cn
    [1]

    王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 1Google Scholar

    Wang L J, Ning Y Q, Qin L, Tong C Z, Chen Y Y 2015 Chin. J. Lumin. 36 1Google Scholar

    [2]

    Hall R N, Fenner G E, Kingsley J D, Soltys T J, CarlsonR O 1962 Phys. Rev. Lett. 9 366Google Scholar

    [3]

    Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar

    [4]

    Tian Z N, Wang L J, Chen Q D, Jiang T, Qin L, Wang LJ, Sun H B 2013 Opt. Lett. 38 5414Google Scholar

    [5]

    崔锦江, 宁永强, 姜琛昱, 王帆, 高静, 张星, 王贞福, 武晓东, 檀慧明 2011 中国激光 38 0102002Google Scholar

    Cui J J, Ning Y Q, Jiang C Y, Wang F, Gao J, Zhang X, Wang Z F, Wu X D, Tan X H 2011 Chin. J. Lasers 38 0102002Google Scholar

    [6]

    Kuznetsov M, Hakimi F, Sprague R, Mooradian A 1997 IEEE J. Sel. Top. Quantum Electron. 9 1063Google Scholar

    [7]

    Hein A, Demaria F, Kern A, Menzel S, Rinaldi F, Rösch R, Unger P 2011 IEEE Photonics Technol. Lett. 23 179Google Scholar

    [8]

    Zhang P, Jiang M H, Men Y B, Zhu R J, Liang Y P, Zhang Y 2015 Opt. Quantum Electron. 47 423Google Scholar

    [9]

    Tilma B W, Mangold M, Zaugg C A, Link S M, Waldburger D, Klenner A, Mayer A S, Gini E, Golling M, Keller U 2015 Light Sci. Appl. 4 e310Google Scholar

    [10]

    Tropper A C, Hoogland S 2006 Prog. Quantum Electron. 30 1Google Scholar

    [11]

    Rahimi-Iman A 2016 J. Opt. 18 093003Google Scholar

    [12]

    Yoo J, Kim K, Lee S, Lim S, Kim G, Kim J, Cho S, Lee J, Kim T, Park Y 2006 Appl. Phys. Lett. 89 131125Google Scholar

    [13]

    Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U 2008 Opt. Lett. 33 2719Google Scholar

    [14]

    Mereuta A, Nechay K, Caliman A, Suruceanu G, Rudra A, Gallo P, Guina M, Kapon E 2019 IEEE J. Sel. Top. Quantum Electron. 25 1700605Google Scholar

    [15]

    Broda A, Kuz′micz A, Rychlik G, Chmielewski K, Wójcik-Jedlin′ska A, Sankowska I, Gołaszewska-Malec K, Michalak K, Muszalski J 2017 Opti. Quantum Electron. 49 287Google Scholar

    [16]

    Guoyu H, Kriso C, Zhang F, Wichmann M, Stolz W, Fedorova K A, Rahimi-Iman A 2019 Opt. Lett. 44 4000Google Scholar

    [17]

    邱小浪, 陈雪花, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 中国激光 46 14Google Scholar

    Qiu X L, Chen X H, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Chin. J. Lasers 46 14Google Scholar

    [18]

    邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 68 114204Google Scholar

    Qiu X L, Wang X X, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar

    [19]

    Kouznetsov D, Bisson J F, Ueda K 2009 Opt. Mater. 31 754Google Scholar

    [20]

    Chang C S, Chuang S L 1995 IEEE J. Sel. Top. Quantum Electron. 1 218Google Scholar

    [21]

    Corzine S W, Geels R S, Scott J W, Yan R H, Coldren L A 1989 IEEE J. Quantum Electron. 25 1513Google Scholar

    [22]

    Zhang J, Ning Y, Zeng Y, Zeng Y, Zhang J, Zhang J, Fu X, Tong C, Wang L 2013 Laser Phys. Lett. 10 045802Google Scholar

    [23]

    朱仁江, 潘英俊, 张鹏, 戴特力, 范嗣强, 梁一平 2014 红外与毫米波学报 33 272Google Scholar

    Zhu R J, Pan Y J, Zhang P, Tai T L, Fan S Q, Liang Y P 2014 J. Infrared Millim. Waves 33 272Google Scholar

    [24]

    Laurain A, Schelle M, Wang T L, Hader J, Moloney J V, Koch S W, Heinen B, Koch M, Kunert B, Stolz W 2012 High- Power Lasers 2012: Technology and Systems (Edinburgh: Society of Photo-Optical Instrumentation Engineers) p85470 I-1

  • 图 1  (a) VECSEL系统工作原理图; (b) 增益芯片内各层折射率及光场分布

    Fig. 1.  (a) Schematic diagram of the VECSEL system; (b) distributions of the refractive index of each layer and the optical field within the gain chip.

    图 2  (a) 室温下InGaAs量子阱的发光波长为970, 975, 980 nm时, 量子阱中In组分与厚度的关系; (b) 增益峰值在980 nm InGaAs量子阱增益光谱对比; (c) 对应980 nm波长的InGaAs量子阱的价带结构(HH1, 第一重空穴; LH1, 第一轻空穴);

    Fig. 2.  (a) Relationships between the In content and thickness of quantum wells when its emitting wavelength is 970, 975, 980 nm; (b) the gain spectra of different quantum wells with the same gain peak wavelength of 980 nm; (c) the valence subband structures of InGaAs QWs corresponding to a wavelength of 980 nm (HH1, the first heavy hole subband; LH1, the first light hole subband.).

    图 3  (a) InGaAs量子阱的峰值增益随载流子浓度的变化关系(增益谱峰值波长位于980 nm); (b) 不同InGaAs量子阱的材料增益随工作温度变化

    Fig. 3.  (a) The change of gain peak with the carrier density within quantum wells when the gain peak wavelength is 980 nm; (b) the change of material gain with the operating temperature.

    图 4  (a) 5 nm厚度的InGaAs量子阱的增益光谱随工作温度的变化; (b) 增益峰值波长随工作温度的变化

    Fig. 4.  (a) The gain spectra and (b) the gain peak wavelength of 5 nm InGaAs quantum well at different opera-ting temperatures.

    图 5  (a) 5种不同量子阱/势垒层结构的增益光谱对比; (b) 5种不同量子阱/势垒层结构的增益谱峰值随载流子浓度的变化关系

    Fig. 5.  (a) The gain spectra of InGaAs quantum well with different barrier layers; (b) the gain peak changing with the carrier density for different structures.

    图 6  所制备的增益芯片对不同入射角度入射光的反射光谱

    Fig. 6.  The measured reflection spectra of the gain chip when the optical incident angle is 0°, 40°, and 70°.

    图 7  外腔镜的反射率分别为96.3%, 97.7%, 99.1%时 (a) VECSEL系统的输出功率随着抽运功率的变化曲线, (b) 激光波长随着抽运功率的变化曲线

    Fig. 7.  (a) The output power of VECSEL and (b) the lasing wavelength changing with the pump power, with the output mirror reflectivity of 99.1%, 97.7%, and 96.3%.

    图 8  VECSEL系统输出的激光光束在两个正交方向上的发散角, 插图为激光光斑二维彩图

    Fig. 8.  The divergence angles of VECSEL along the orthogonal direction, inserted is the measured 2D optical spot pattern.

    表 1  模拟的5种发光区材料结构

    Table 1.  Simulated material structures of 5 kinds of luminous zone.

    1Al0.06Ga0.94As barrier/InGaAs QW/
    Al0.06Ga0.94As barrier
    2GaAs barrier/InGaAs QW/GaAs barrier
    3GaAsP barrier/InGaAs QW/GaAsP barrier
    4GaAsP/GaAs barrier/InGaAs QW/GaAs barrier/GaAsP
    5GaAs barrier/InGaAs QW/GaAsP barrier
    下载: 导出CSV
    Baidu
  • [1]

    王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 1Google Scholar

    Wang L J, Ning Y Q, Qin L, Tong C Z, Chen Y Y 2015 Chin. J. Lumin. 36 1Google Scholar

    [2]

    Hall R N, Fenner G E, Kingsley J D, Soltys T J, CarlsonR O 1962 Phys. Rev. Lett. 9 366Google Scholar

    [3]

    Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar

    [4]

    Tian Z N, Wang L J, Chen Q D, Jiang T, Qin L, Wang LJ, Sun H B 2013 Opt. Lett. 38 5414Google Scholar

    [5]

    崔锦江, 宁永强, 姜琛昱, 王帆, 高静, 张星, 王贞福, 武晓东, 檀慧明 2011 中国激光 38 0102002Google Scholar

    Cui J J, Ning Y Q, Jiang C Y, Wang F, Gao J, Zhang X, Wang Z F, Wu X D, Tan X H 2011 Chin. J. Lasers 38 0102002Google Scholar

    [6]

    Kuznetsov M, Hakimi F, Sprague R, Mooradian A 1997 IEEE J. Sel. Top. Quantum Electron. 9 1063Google Scholar

    [7]

    Hein A, Demaria F, Kern A, Menzel S, Rinaldi F, Rösch R, Unger P 2011 IEEE Photonics Technol. Lett. 23 179Google Scholar

    [8]

    Zhang P, Jiang M H, Men Y B, Zhu R J, Liang Y P, Zhang Y 2015 Opt. Quantum Electron. 47 423Google Scholar

    [9]

    Tilma B W, Mangold M, Zaugg C A, Link S M, Waldburger D, Klenner A, Mayer A S, Gini E, Golling M, Keller U 2015 Light Sci. Appl. 4 e310Google Scholar

    [10]

    Tropper A C, Hoogland S 2006 Prog. Quantum Electron. 30 1Google Scholar

    [11]

    Rahimi-Iman A 2016 J. Opt. 18 093003Google Scholar

    [12]

    Yoo J, Kim K, Lee S, Lim S, Kim G, Kim J, Cho S, Lee J, Kim T, Park Y 2006 Appl. Phys. Lett. 89 131125Google Scholar

    [13]

    Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U 2008 Opt. Lett. 33 2719Google Scholar

    [14]

    Mereuta A, Nechay K, Caliman A, Suruceanu G, Rudra A, Gallo P, Guina M, Kapon E 2019 IEEE J. Sel. Top. Quantum Electron. 25 1700605Google Scholar

    [15]

    Broda A, Kuz′micz A, Rychlik G, Chmielewski K, Wójcik-Jedlin′ska A, Sankowska I, Gołaszewska-Malec K, Michalak K, Muszalski J 2017 Opti. Quantum Electron. 49 287Google Scholar

    [16]

    Guoyu H, Kriso C, Zhang F, Wichmann M, Stolz W, Fedorova K A, Rahimi-Iman A 2019 Opt. Lett. 44 4000Google Scholar

    [17]

    邱小浪, 陈雪花, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 中国激光 46 14Google Scholar

    Qiu X L, Chen X H, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Chin. J. Lasers 46 14Google Scholar

    [18]

    邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 68 114204Google Scholar

    Qiu X L, Wang X X, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar

    [19]

    Kouznetsov D, Bisson J F, Ueda K 2009 Opt. Mater. 31 754Google Scholar

    [20]

    Chang C S, Chuang S L 1995 IEEE J. Sel. Top. Quantum Electron. 1 218Google Scholar

    [21]

    Corzine S W, Geels R S, Scott J W, Yan R H, Coldren L A 1989 IEEE J. Quantum Electron. 25 1513Google Scholar

    [22]

    Zhang J, Ning Y, Zeng Y, Zeng Y, Zhang J, Zhang J, Fu X, Tong C, Wang L 2013 Laser Phys. Lett. 10 045802Google Scholar

    [23]

    朱仁江, 潘英俊, 张鹏, 戴特力, 范嗣强, 梁一平 2014 红外与毫米波学报 33 272Google Scholar

    Zhu R J, Pan Y J, Zhang P, Tai T L, Fan S Q, Liang Y P 2014 J. Infrared Millim. Waves 33 272Google Scholar

    [24]

    Laurain A, Schelle M, Wang T L, Hader J, Moloney J V, Koch S W, Heinen B, Koch M, Kunert B, Stolz W 2012 High- Power Lasers 2012: Technology and Systems (Edinburgh: Society of Photo-Optical Instrumentation Engineers) p85470 I-1

  • [1] 奚小明, 杨保来, 王鹏, 张汉伟, 王小林, 韩凯, 王泽锋, 许晓军, 陈金宝. 万瓦级光纤激光双色镜合成技术.  , 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [2] 于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮. 940 nm垂直腔面发射激光器的设计及制备.  , 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [3] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器.  , 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [4] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长.  , 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [5] 王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐, 潘蓉, 黄昱升, 田佳丁, 李丹, 闫平, 巩马理. 国产光纤实现同带抽运3000 W激光输出.  , 2018, 67(2): 024205. doi: 10.7498/aps.67.20171676
    [6] 李建军. 近800 nm波长张应变GaAsP/AlGaAs量子阱激光器有源区的设计.  , 2018, 67(6): 067801. doi: 10.7498/aps.67.20171816
    [7] 程丽君, 杨苏辉, 赵长明, 张海洋. 高功率宽带射频调制连续激光源.  , 2018, 67(3): 034203. doi: 10.7498/aps.67.20172017
    [8] 袁忠才, 时家明. 高功率微波与等离子体相互作用理论和数值研究.  , 2014, 63(9): 095202. doi: 10.7498/aps.63.095202
    [9] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响.  , 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [10] 雷小丽, 王大威, 梁士雄, 吴朝新. 半导体量子阱中激子波函数及其 Fourier系数的计算和应用.  , 2012, 61(5): 057803. doi: 10.7498/aps.61.057803
    [11] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型.  , 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [12] 苏安, 高英俊. 双重势垒一维光子晶体量子阱的光传输特性研究.  , 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [13] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明.  , 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [14] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究.  , 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [15] 李龙龙, 徐文, 曾雉. 转移矩阵理论及其在Ⅲ/Ⅴ族半导体量子阱体系中的应用.  , 2009, 58(13): 266-S271. doi: 10.7498/aps.58.266
    [16] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究.  , 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [17] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化.  , 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [18] 李惠青, 张 杰, 崔大复, 许祖彦, 宁永强, 晏长岭, 秦 莉, 刘 云, 王立军, 曹健林. 高功率垂直腔面发射半导体激光器优化设计研究.  , 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
    [19] 卢励吾, 张砚华, 徐遵图, 徐仲英, 王占国, J.Wang, WeikunGe. 快速热处理对应变InGaAs/GaAs单量子阱激光二极管电子发射和DX中心的影响.  , 2002, 51(2): 367-371. doi: 10.7498/aps.51.367
    [20] 陈贵宾, 陆卫, 缪中林, 李志锋, 蔡炜颖, 沈学础, 陈昌明, 朱德彰, 胡钧, 李明乾. 离子注入诱导量子阱界面混合效应的光致荧光谱研究.  , 2002, 51(3): 659-662. doi: 10.7498/aps.51.659
计量
  • 文章访问数:  9999
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-25
  • 修回日期:  2019-12-31
  • 刊出日期:  2020-03-05

/

返回文章
返回
Baidu
map