-
为改善中红外光参量振荡器(OPO)激光输出光束质量, 设计了一种90°像旋转四镜非平面环形腔型结构. 通过建立单位球等效计算方法, 对此种特殊腔型结构存在的像旋转角进行计算, 并由此确定了适用于中红外OPO运行的90°像旋转谐振腔结构相关参数. 在此基础上进一步建立了非对称轴环形腔中光场模式自再现模型, 分析得出随着像旋转角由0°向90°变化, 谐振腔内光场模式逐渐均匀化, 当旋转角为90°时, 基模以及高阶模都表现出非常好的中心对称性. 基于此采用中红外ZnGeP2 OPO对所设计的腔型参数进行实验测量, 实现了光束质量
$M^2_X=1.81 $ 和$M^2_Y=1.61 $ . 由此可以证明所设计的90°像旋转四镜非平面环形腔对中红外OPO激光系统的输出光束质量的优化有显著效果.Mid-infrared optical parametric oscillator (OPO) operating in the mid-infrared transmission window (3—5 μm wavelength range) is one of hot issues in the field of laser system. It has many applications in environmental detection, remote sensing, and medicine. Besides, this laser system is used as a key component of infrared countermeasures. The optical damage limit of nonlinear crystal is a great challenge to the mid-infrared OPO which is pumped by a nanosecond laser source. Therefore, the pump beam diameter should be appropriately increased to avoid damaging the crystal when scaling a nanosecond OPO to high pulse energy. The result of this design is that the Fresnel number in the cavity is increased and the beam quality is deteriorated. In order to improve the beam quality of mid-infrared OPO laser, a 90° image-rotating four-mirror non-planar ring resonator structure is designed. The advantages of this design include the general ring resonators, such as greatly reduced feedback into the pump laser and the avoidance of optical damage caused by standing wave cavity structure. Most importantly, the image rotating cavity can uniform the beam in the cavity and improve the beam quality. In this paper, the equivalent sphere representation of a four-mirror nonplanar ring resonator is established, and the image rotation angle of this special cavity structure is calculated. Based on this method, the parameters related to the 90° image rotating resonator structure suitable for mid-infrared OPO operation are designed. The self-reproduction of the transverse mode in the axially-asymmetric resonator is further established. It is found that the transverse mode in the resonator is gradually uniformed as the rotation angle of the image changes from 0° to 90°. When the rotation angle is 90°, the fundamental mode and the high-order mode both exhibit very good central symmetry. Finally, the mid-infrared ZnGeP2 OPO laser with the 90° image rotating resonator structure is used to verify the improvement of beam quality. The beam quality of$M_X^2=1.81 $ and$M_Y^2=1.61$ are achieved. It can be proved that the 90° rotating four-mirror non-planar ring resonator has a significant effect on the optimization of the output beam quality of the mid-infrared OPO laser system.[1] Mürtz M, Hering P 2008 Mid-Infrared Coherent Sources and Applications: Online Monitoring of Exhaled Breath Using Mid-Infrared Laser Spectroscopy (Vol. 1) (Germany: Springer) p535
[2] Geiser P, Willer U, Walter D, Schade W 2006 Appl. Phys. B 83 175
[3] Waynant R W, Ilev I K, Gannot I 2001 Philos. Trans. R. Soc. B 359 635Google Scholar
[4] Stoeppler G, Schellhorn M, Eichhorn M 2012 Laser Phys. 22 1095Google Scholar
[5] 任钢, 钟鸣, 李彤, 牛瑞华, 曾饮勇, 龚赤冲, 何衡湘, 于淑范, 王滨 2006 红外与激光工程 3 5
Ren G, Zhong M, Li T, Niu R H, Zeng Q Y, Gong C C, He H X, Yu S F, Wang B 2006 Infrared Laser Eng. 3 5
[6] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 22 234Google Scholar
Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 22 234Google Scholar
[7] 王礼, 杨经纬, 蔡旭武, 王金涛, 吴海信, 吴先友, 江海河 2014 中国激光 41 37
Wang L, Yang J W, Cai X W, Wang J T, Wu H X, Wu X Y, Jiang H H 2014 Chinese J. Lasers 41 37
[8] Kadwani P, Gebhardt M, Gaida C, Shah L, Richardson M 2013 CLEO: Applications and Technology JW2A 29
[9] 姚宝权, 王月珠, 柳强, 王骐 2001 中国激光 28 693Google Scholar
Yao B Q, Wang Y Z, Liu Q, Wang Q 2001 Chinese J. Lasers 28 693Google Scholar
[10] Rustad G, Øystein Farsund, Arisholm G 2010 SPIE Solid State Lasers and Amplifiers IV, and High-Power Lasers Brussels, Belgium April 12−16, 7721 77210J
[11] Lippert E, Fonnum H, Arisholm G, Stenersen K 2010 Opt. Express 18 26475Google Scholar
[12] Haakestad M W, Fonnum H, Lippert E 2014 Opt. Express 22 8556Google Scholar
[13] Shen Y J, Yao B Q, Cui Z, Duan X M, Ju Y L, Wang Y Z 2014 Appl. Phys. B 117 127Google Scholar
[14] Qian C P, Shen Y J, Dai T Y, Duan X M, Yao B Q 2016 SPIE High-Power Lasers and Applications VIII Beijing, China October 12−14, 10016 100160G
[15] 安然, 范小贞, 卢建新, 文侨 2018 67 074201Google Scholar
An R, Fan X Z, Lu J X, Wen Q 2018 Acta Phys. Sin. 67 074201Google Scholar
[16] 蔡小天, 李霄, 赵国民 2017 光学学报 37 1219001
Cai X T, Li X, Zhao G M 2017 Acta Opt. Sin. 37 1219001
[17] 方洪烈 1981 光学谐振腔理论 第23页
Fang H L 1981 The Principle of the Optical Resonator (Vol. 1) (Beijing: Science Press) p23 (in Chinese)
[18] 张楚宾 1959 球面三角学 (北京: 高等教育出版社) 第14页
Zhang C B 1959 Spherical Trigonometry (Vol. 1) (Beijing: Higher Education Press) p14 (in Chinese)
[19] 吕百达 2003激光光学 光束描述、传输变换与光腔技术物理(北京: 高等教育出版社) 第13页
Lu B D 2003 Laser Optics: Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (Vol. 3) (Beijing: Higher Education Press) p13 (in Chinese)
[20] 汪之国, 肖光宗, 丁志超, 卢广峰, 杨开勇 2015 中国激光 42 s102009
Wang Z G, Xiao G Z, Ding Z C, Lu G F, Yang K Y 2015 Chinese J. Lasers 42 s102009
-
图 6 不同旋转角下四镜非平面环形腔内横模光强分布 (a) 0°旋转角光强分布; (b) 5°旋转角光强分布; (c) 45°旋转角光强分布; (d) 90°旋转角光强分布
Fig. 6. The intensity distribution of transverse mode in a four-mirror non-planar ring resonator at different rotation angles: (a) The intensity distribution at 0° rotation angle; (b) the intensity distribution at 5° rotation angle; (c) the intensity distribution at 45° rotation angle; (d) the intensity distribution at 90° rotation angle.
-
[1] Mürtz M, Hering P 2008 Mid-Infrared Coherent Sources and Applications: Online Monitoring of Exhaled Breath Using Mid-Infrared Laser Spectroscopy (Vol. 1) (Germany: Springer) p535
[2] Geiser P, Willer U, Walter D, Schade W 2006 Appl. Phys. B 83 175
[3] Waynant R W, Ilev I K, Gannot I 2001 Philos. Trans. R. Soc. B 359 635Google Scholar
[4] Stoeppler G, Schellhorn M, Eichhorn M 2012 Laser Phys. 22 1095Google Scholar
[5] 任钢, 钟鸣, 李彤, 牛瑞华, 曾饮勇, 龚赤冲, 何衡湘, 于淑范, 王滨 2006 红外与激光工程 3 5
Ren G, Zhong M, Li T, Niu R H, Zeng Q Y, Gong C C, He H X, Yu S F, Wang B 2006 Infrared Laser Eng. 3 5
[6] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 22 234Google Scholar
Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 22 234Google Scholar
[7] 王礼, 杨经纬, 蔡旭武, 王金涛, 吴海信, 吴先友, 江海河 2014 中国激光 41 37
Wang L, Yang J W, Cai X W, Wang J T, Wu H X, Wu X Y, Jiang H H 2014 Chinese J. Lasers 41 37
[8] Kadwani P, Gebhardt M, Gaida C, Shah L, Richardson M 2013 CLEO: Applications and Technology JW2A 29
[9] 姚宝权, 王月珠, 柳强, 王骐 2001 中国激光 28 693Google Scholar
Yao B Q, Wang Y Z, Liu Q, Wang Q 2001 Chinese J. Lasers 28 693Google Scholar
[10] Rustad G, Øystein Farsund, Arisholm G 2010 SPIE Solid State Lasers and Amplifiers IV, and High-Power Lasers Brussels, Belgium April 12−16, 7721 77210J
[11] Lippert E, Fonnum H, Arisholm G, Stenersen K 2010 Opt. Express 18 26475Google Scholar
[12] Haakestad M W, Fonnum H, Lippert E 2014 Opt. Express 22 8556Google Scholar
[13] Shen Y J, Yao B Q, Cui Z, Duan X M, Ju Y L, Wang Y Z 2014 Appl. Phys. B 117 127Google Scholar
[14] Qian C P, Shen Y J, Dai T Y, Duan X M, Yao B Q 2016 SPIE High-Power Lasers and Applications VIII Beijing, China October 12−14, 10016 100160G
[15] 安然, 范小贞, 卢建新, 文侨 2018 67 074201Google Scholar
An R, Fan X Z, Lu J X, Wen Q 2018 Acta Phys. Sin. 67 074201Google Scholar
[16] 蔡小天, 李霄, 赵国民 2017 光学学报 37 1219001
Cai X T, Li X, Zhao G M 2017 Acta Opt. Sin. 37 1219001
[17] 方洪烈 1981 光学谐振腔理论 第23页
Fang H L 1981 The Principle of the Optical Resonator (Vol. 1) (Beijing: Science Press) p23 (in Chinese)
[18] 张楚宾 1959 球面三角学 (北京: 高等教育出版社) 第14页
Zhang C B 1959 Spherical Trigonometry (Vol. 1) (Beijing: Higher Education Press) p14 (in Chinese)
[19] 吕百达 2003激光光学 光束描述、传输变换与光腔技术物理(北京: 高等教育出版社) 第13页
Lu B D 2003 Laser Optics: Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (Vol. 3) (Beijing: Higher Education Press) p13 (in Chinese)
[20] 汪之国, 肖光宗, 丁志超, 卢广峰, 杨开勇 2015 中国激光 42 s102009
Wang Z G, Xiao G Z, Ding Z C, Lu G F, Yang K Y 2015 Chinese J. Lasers 42 s102009
计量
- 文章访问数: 7460
- PDF下载量: 80
- 被引次数: 0