搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图像传感器像素化效应对菲涅耳非相干关联全息分辨率的影响

潮兴兵 潘鲁平 王子圣 杨锋涛 丁剑平

引用本文:
Citation:

图像传感器像素化效应对菲涅耳非相干关联全息分辨率的影响

潮兴兵, 潘鲁平, 王子圣, 杨锋涛, 丁剑平

Influence of pixelation effect of image sensor on resolution of Fresnel incoherent correlation holography

Chao Xing-Bing, Pan Lu-Ping, Wang Zi-Sheng, Yang Feng-Tao, Ding Jian-Ping
PDF
HTML
导出引用
  • 作为复光场显微成像的一种新技术, 菲涅耳非相干关联全息术(Fresnel incoherent correlation holography, FINCH)因其非相干光记录的特点在近年来受到关注. FINCH作为一种新型非相干全息系统, 如何设计光路实现其最佳的分辨率是一个关键问题. 然而, 针对这个问题的讨论, 目前已有文献存在不同的观点, 有关FINCH最佳分辨率的成像条件仍有待研究. 全息图有效孔径大小是决定全息成像系统分辨率的重要因素,在FINCH系统中, 全息记录距离的变化则会引起全息图有效孔径发生变化, 全息图的有效孔径大小不仅与光路各元件的孔径有关, 还与相干光波相互干涉叠加区域的面积以及图像传感器的像素间距等因素有关. 本文基于波动光学理论, 结合FINCH全息图的波带结构特征, 研究了FINCH全息图的有效孔径. 研究发现数字全息记录相机的像素化特性是影响FINCH成像分辨率的决定性因素, 并进一步通过数值模拟和光学实验验证了理论分析结果: 全息图记录距离(Zh)等于空间光调制器加载的衍射透镜焦距(fd)时, FINCH系统的再现像将会达到最佳横向分辨率, 且分辨率随成像距离$\left| {{Z_{\rm{h}}} - {f_{\rm{d}}}} \right|$的增大而降低.
    As a new technique of photomicrography of complex optical field, the Fresnel incoherent correlation holography (FINCH) is particularly attractive in recent years because of its incoherent optical recording characteristics. For a new image recording and reconstruction system, a key concern is how to configure the experimental layout of FINCH by using available optical elements to achieve optimal resolution. However, in previous reports, there exist different viewpoints about this issue, and the imaging conditions of the best resolution remain to be clarified. As is well known, the imaging resolution is affected by the effective aperture of hologram and the change of the recording distance between spatial light modulator (SLM) and image sensor (CCD) can cause the hologram aperture to change. In the FINCH system the effective aperture of hologram is related not only to the aperture influence of each element used in the recording system, but also to the overlapping area of interference between the signal and reference wave and the pixel spacing of the image sensor. In previous reports, the researchers mainly used the ray-tracing method to discuss the effective aperture radius of hologram by ignoring the influences of the diffraction of light wave and the pixel spacing size of image sensor on the aperture of hologram. Based on the theories of wave optics we carry out a thorough investigation into the effective aperture of FINCH. We find that the pixelization of the image sensor, e.g. CCD, is a decisive factor influencing the resolution of FINCH, and we adopt numerical simulations and optical experiments to further verify the theoretical conclusions that the optimal lateral resolution of FINCH is achieved only if the recording distance (Zh) is equal to the focal length (fd) of diffractive lens displayed on a spatial light modulator; the resolution is deteriorated with the increase of $\left| {{Z_{\rm{h}}} - {f_{\rm{d}}}} \right|$. From the viewpoint of Fourier optics, the smaller the imaging distance $\left| {{Z_{\rm{h}}} - {f_{\rm{d}}}} \right|$, the larger the aperture angle of hologram ($ \approx {{{R_{\rm{h}}}} / {\left| {{Z_{\rm{h}}} - {f_{\rm d}}} \right|}}$), the higher the collected spatial frequency is, hence, the higher the lateral resolution is. On the other hand, although the FINCH overcomes the spatial coherence limitation, it requires temporally coherent or quasi-monochromatic light. Our study also indicates that the requirements for the spatiotemporal coherence can be eased when the CCD is located at the focal plane of diffractive lens.
      通信作者: 丁剑平, jpding@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0306200)和国家自然科学基金(批准号: 91750202, 11534006)资助的课题.
      Corresponding author: Ding Jian-Ping, jpding@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0306200) and the National Natural Science Foundation of China (Grant Nos. 91750202, 11534006).
    [1]

    Osten W, Faridian A, Gao P, Korner K, Naik D, Pedrini G, Singh A K, Takeda M, Wilke M 2014 Appl. Opt. 53 G44Google Scholar

    [2]

    Kreis T 2016 IEEE Trans. Ind. Infomat. 12 240Google Scholar

    [3]

    Kelner R, Rosen J 2016 IEEE Trans. Ind. Infomat. 12 220Google Scholar

    [4]

    Rosen J, Brooker G 2007 Opt. Lett. 32 912Google Scholar

    [5]

    Rosen J, Brooker G 2008 Nat. Photon. 2 190Google Scholar

    [6]

    Rosen J, Brooker G 2007 Opt. Express 15 2244Google Scholar

    [7]

    Lai X M, Zhao Y, Lv X H, Zhou Z Q, Zeng S Q 2012 Opt. Lett. 37 2445Google Scholar

    [8]

    Siegel N, Rosen J, Brooker G 2012 Opt. Express 20 19822Google Scholar

    [9]

    Katz B, Rosen J 2010 Opt. Express 18 962Google Scholar

    [10]

    Rosen J, Kelner R 2014 Opt. Express 22 29048Google Scholar

    [11]

    Katz B, Rosen J, Kelner R, Brooker G 2012 Opt. Express 20 9109Google Scholar

    [12]

    Wan Y H, Man T L, Chen H, Jiang Z Q, Wang D Y 2014 Chin. Phys. Lett. 31 044203Google Scholar

    [13]

    Siegel N, Rosen J, Brooker G 2013 Opt. Lett. 38 3922Google Scholar

    [14]

    Katz B, Wulich D, Rosen J 2010 Appl. Opt. 49 5757Google Scholar

    [15]

    Brooker G, Siegel N, Wang V, Rosen J 2011 Opt. Express 19 5047Google Scholar

    [16]

    Rosen J, Siegel N, Brooker G 2011 Opt. Express 19 26249Google Scholar

    [17]

    Bouchal P, Kapitan J, Chmelik R, Bouchal Z 2011 Opt. Express 19 15603Google Scholar

    [18]

    Vijayakumar A, Kashter Y, Kelner R, Rosen J 2017 Appl. Opt . 56 F67Google Scholar

    [19]

    白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠 2018 67 064202Google Scholar

    Bai Y H, Zang R H, Wang P, Rong T D, Ma F Y, Du Y L, Duan Z Y, Gong Q X 2018 Acta Phys. Sin. 67 064202Google Scholar

    [20]

    Goodman J W 1996 Introduction to Fourier Optics (New York: McGraw-Hill) pp66−67, p157

    [21]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) pp128−144

    [22]

    Kim M K 2011 Digital Holographic Microscopy: Principles, Techniques, and Applications (New York: Springer) pp63−64

    [23]

    Claus D, Iliescu D, Rodenburg J M 2013 Appl. Opt. 52 A326Google Scholar

    [24]

    Sun P C, Leith E N 1994 Appl. Opt. 33 597Google Scholar

    [25]

    Yang G G, Chen H S, Leith E N 2000 Appl. Opt. 39 4076Google Scholar

    [26]

    Muffoletto R P, Tyler J M, Tohline J E 2007 Opt. Express 15 5631Google Scholar

    [27]

    Guo C S, Xie Y Y, Sha B 2014 Opt. Lett. 39 2338Google Scholar

    [28]

    Jacquot M, Sandoz P, Tribillon G 2001 Opt. Commun. 190 87Google Scholar

    [29]

    Cuche E, Marquet P, Depeursinge C 1999 Appl. Opt. 38 6994Google Scholar

    [30]

    Guo C S, Zhang L, Rong Z Y, Wang H T 2003 Opt. Eng. 42 2768Google Scholar

  • 图 1  FINCH系统原理示意图(P1和P2为偏振片)

    Fig. 1.  Illustration of the principle of FINCH system, where P1 and P2 are polarizers.

    图 2  可分辨物点半径${\rho _{\rm{o}}}$${Z_{\rm{h}}}$的相互依赖关系(${f_{\rm{d}}}{\rm{ = }}\;0.60\;{\rm{m}}$) (a)可分辨像斑半径${\rho _{\rm{o}}}$的数值模拟实验和解析计算的结果比较; (b)数值模拟的再现像斑的强度分布

    Fig. 2.  Dependence of the radius ${\rho _{\rm{o}}}$ of resolvable image spot on the recording distance ${Z_{\rm{h}}}$ while keeping ${f_{\rm{d}}}{\rm{ = }}\;0.60\;{\rm{m}}$: (a) Comparisons between numerical simulation experiment and analytical calculation of resolvable speckle radius ${\rho _{\rm{o}}};$ (b) intensity profiles of reconstructed image spots by numerical simulation.

    图 3  不同记录距离${Z_{\rm{h}}}$(0.30 m (a), 0.60 m (b)和1.20 m (c))获得的双物点再现像, 其中${f_{\rm{d}}} = 0.60\;{\rm{m}}$, 双物点间距$\varDelta $分别为$9.0$(第1行), $10.0$(第2行)和$11.0\; {\text{μ}} {\rm{m}}$(第3行); (d1), (d2)和(d3)分别表示双物点间距$\varDelta $为9.0, 10.0和$11.0\; {\text{μ}} {\rm{m}}$时, 再现像强度的一维分布

    Fig. 3.  Reconstructed double images under different recording distances ${Z_{\rm{h}}}$ (0.30 m (a), 0.60 m (b) and 1.20 m (c)) while keeping ${f_{\rm{d}}} = 0.60\;{\rm{m}}$ for different spacing of two object points $\varDelta = 9.0\;{\text{μ}} {\rm{m}}$ (the first row), $10.0\;{\text{μ}} {\rm{m}}$ (the second row) and $11.0\; {\text{μ}} {\rm{m}}$ (the third row), respectively. (d1), (d2) and (d3) One-dimensional distribution of reconstructed image intensity for $\varDelta = 9.0, 10.0$ and $11.0\; {\text{μ}} {\rm{m}}$, respectively.

    图 5  (a)计算机数字再现的图像, 其中对每一种衍射透镜焦距${f_{\rm{d}}}$(分别为0.30, 0.40, 0.50和0.60 m)测试了不同记录距离${Z_{\rm{h}}}$(= 0.90${f_{\rm{d}}},$ 0.95${f_{\rm{d}}},$ 1.00${f_{\rm{d}}},$ 1.05${f_{\rm{d}}}$, 1.10${f_{\rm{d}}}$); (b)不同的记录距离相对值(${{\alpha = {Z_{\rm{h}}}} / {{f_{\rm{d}}}}}$)对应的再现像可见度

    Fig. 5.  (a) Computer digital reconstructed images for ${f_{\rm{d}}}$ = 0.30, 0.40, 0.50 and 0.60 m, each with different ${Z_{\rm{h}}}$ (= 0.90${f_{\rm{d}}},$ 0.95${f_{\rm{d}}},$ 1.00${f_{\rm{d}}},$ 1.05${f_{\rm{d}}}$ and 1.10${f_{\rm{d}}}$); (b) relative values of different recording distances (${{\alpha = {Z_{\rm{h}}}} / {{f_{\rm{d}}}}}$) corresponding to visibility of reconstructed image.

    图 6  (a)—(o) 再现图像的裁剪部分, ${f_{\rm{d}}} = 0.60\;{\rm{m}}$, 记录距离${Z_{\rm{h}}}$从0.53 m到0.67 m, 红色框所标记区域的可见度将在图7中显示

    Fig. 6.  (a)−(o) Cropped sections of reconstructed images when ${Z_{\rm{h}}}$ varies from 0.53 m to 0.67 m while ${f_{\rm{d}}}$ = 0.60 m. Visibility of the lines marked with the red box for the different ${Z_{\rm{h}}}$ will be plotted in Figure 7.

    图 7  不同记录距离Zh下, 图6红色方框标示区再现像的可见度分析 (a)可见度; (b) 标示区特征线的强度分布

    Fig. 7.  Visibility of line pattern within the regions marked with the red box in Figure 6 for the different ${Z_{\rm{h}}}$: (a) Visibility of the line pattern; (b) intensity profile across the line pattern.

    图 4  FINCH系统光学实验装置示意图

    Fig. 4.  Schematic representation of experimental set-up of FINCH.

    Baidu
  • [1]

    Osten W, Faridian A, Gao P, Korner K, Naik D, Pedrini G, Singh A K, Takeda M, Wilke M 2014 Appl. Opt. 53 G44Google Scholar

    [2]

    Kreis T 2016 IEEE Trans. Ind. Infomat. 12 240Google Scholar

    [3]

    Kelner R, Rosen J 2016 IEEE Trans. Ind. Infomat. 12 220Google Scholar

    [4]

    Rosen J, Brooker G 2007 Opt. Lett. 32 912Google Scholar

    [5]

    Rosen J, Brooker G 2008 Nat. Photon. 2 190Google Scholar

    [6]

    Rosen J, Brooker G 2007 Opt. Express 15 2244Google Scholar

    [7]

    Lai X M, Zhao Y, Lv X H, Zhou Z Q, Zeng S Q 2012 Opt. Lett. 37 2445Google Scholar

    [8]

    Siegel N, Rosen J, Brooker G 2012 Opt. Express 20 19822Google Scholar

    [9]

    Katz B, Rosen J 2010 Opt. Express 18 962Google Scholar

    [10]

    Rosen J, Kelner R 2014 Opt. Express 22 29048Google Scholar

    [11]

    Katz B, Rosen J, Kelner R, Brooker G 2012 Opt. Express 20 9109Google Scholar

    [12]

    Wan Y H, Man T L, Chen H, Jiang Z Q, Wang D Y 2014 Chin. Phys. Lett. 31 044203Google Scholar

    [13]

    Siegel N, Rosen J, Brooker G 2013 Opt. Lett. 38 3922Google Scholar

    [14]

    Katz B, Wulich D, Rosen J 2010 Appl. Opt. 49 5757Google Scholar

    [15]

    Brooker G, Siegel N, Wang V, Rosen J 2011 Opt. Express 19 5047Google Scholar

    [16]

    Rosen J, Siegel N, Brooker G 2011 Opt. Express 19 26249Google Scholar

    [17]

    Bouchal P, Kapitan J, Chmelik R, Bouchal Z 2011 Opt. Express 19 15603Google Scholar

    [18]

    Vijayakumar A, Kashter Y, Kelner R, Rosen J 2017 Appl. Opt . 56 F67Google Scholar

    [19]

    白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠 2018 67 064202Google Scholar

    Bai Y H, Zang R H, Wang P, Rong T D, Ma F Y, Du Y L, Duan Z Y, Gong Q X 2018 Acta Phys. Sin. 67 064202Google Scholar

    [20]

    Goodman J W 1996 Introduction to Fourier Optics (New York: McGraw-Hill) pp66−67, p157

    [21]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) pp128−144

    [22]

    Kim M K 2011 Digital Holographic Microscopy: Principles, Techniques, and Applications (New York: Springer) pp63−64

    [23]

    Claus D, Iliescu D, Rodenburg J M 2013 Appl. Opt. 52 A326Google Scholar

    [24]

    Sun P C, Leith E N 1994 Appl. Opt. 33 597Google Scholar

    [25]

    Yang G G, Chen H S, Leith E N 2000 Appl. Opt. 39 4076Google Scholar

    [26]

    Muffoletto R P, Tyler J M, Tohline J E 2007 Opt. Express 15 5631Google Scholar

    [27]

    Guo C S, Xie Y Y, Sha B 2014 Opt. Lett. 39 2338Google Scholar

    [28]

    Jacquot M, Sandoz P, Tribillon G 2001 Opt. Commun. 190 87Google Scholar

    [29]

    Cuche E, Marquet P, Depeursinge C 1999 Appl. Opt. 38 6994Google Scholar

    [30]

    Guo C S, Zhang L, Rong Z Y, Wang H T 2003 Opt. Eng. 42 2768Google Scholar

  • [1] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究.  , 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [2] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于光学全息的任意矢量光的生成方法.  , 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [3] 袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤. 双Lloyd镜数字全息显微测量术.  , 2014, 63(10): 104207. doi: 10.7498/aps.63.104207
    [4] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究.  , 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [5] 崔省伟, 陈子阳, 胡克磊, 蒲继雄. 部分相干Airy光束及其传输的研究.  , 2013, 62(9): 094205. doi: 10.7498/aps.62.094205
    [6] 王华英, 于梦杰, 刘飞飞, 江亚男, 宋修法, 高亚飞. 基于同态信号处理的数字全息广义线性重建算法研究.  , 2013, 62(23): 234207. doi: 10.7498/aps.62.234207
    [7] 王华英, 刘飞飞, 宋修法, 廖薇, 赵宝群, 于梦杰, 刘佐强. 高质量等曲率物参光像面数字全息显微系统.  , 2013, 62(2): 024207. doi: 10.7498/aps.62.024207
    [8] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究.  , 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [9] 王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强. 优化的数字全息显微成像系统.  , 2013, 62(5): 054208. doi: 10.7498/aps.62.054208
    [10] 王芳, 赵星, 杨勇, 方志良, 袁小聪. 基于人眼视觉的集成成像三维显示分辨率的比较.  , 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [11] 任玲, 常本康, 侯瑞丽, 王勇. 均匀掺杂GaAs材料光电子的输运性能研究.  , 2011, 60(8): 087202. doi: 10.7498/aps.60.087202
    [12] 赵磊, 王龙阁, 胡宾, 黄明举. 掺杂TiO2纳米颗粒的抗缩皱光致聚合物全息特性的研究.  , 2011, 60(4): 044213. doi: 10.7498/aps.60.044213
    [13] 余波, 应阳君, 许海波. 惯性约束聚变的中子半影成像诊断系统的优化研究.  , 2010, 59(6): 4100-4109. doi: 10.7498/aps.59.4100
    [14] 马晨, 张保民, 张立, 马玉峰, 赵维富. 碱性品红光致聚合物薄膜的光致光衍射.  , 2010, 59(9): 6266-6272. doi: 10.7498/aps.59.6266
    [15] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究.  , 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [16] 张兴华, 赵宝升, 刘永安, 缪震华, 朱香平, 赵菲菲. 紫外单光子成像系统增益特性研究.  , 2009, 58(3): 1779-1784. doi: 10.7498/aps.58.1779
    [17] 林瀚, 刘守, 张向苏, 刘宝林, 任雪畅. 全息技术制作二维光子晶体蓝宝石衬底提高发光二极管外量子效率.  , 2009, 58(2): 959-963. doi: 10.7498/aps.58.959
    [18] 张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹 玮. 紫外单光子成像系统的研究.  , 2008, 57(7): 4238-4243. doi: 10.7498/aps.57.4238
    [19] 朱化凤, 陈建文, 高鸿奕, 谢红兰, 徐至展. 高频可变间距全息光栅的制作方法的计算机模拟研究.  , 2005, 54(2): 682-686. doi: 10.7498/aps.54.682
    [20] 高鸿奕, 陈建文, 谢红兰, 陈敏, 肖体乔, 朱佩平, 徐至展. 原子束多光束干涉实验的一种方法.  , 2002, 51(8): 1696-1699. doi: 10.7498/aps.51.1696
计量
  • 文章访问数:  7165
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-12
  • 修回日期:  2019-01-02
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map