搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微结构气体探测器中紫外激光束的信号和指向精度实验研究

王海云 祁辉荣 刘凌 原之洋 张余炼 温志文 张建 陈元柏 欧阳群

引用本文:
Citation:

微结构气体探测器中紫外激光束的信号和指向精度实验研究

王海云, 祁辉荣, 刘凌, 原之洋, 张余炼, 温志文, 张建, 陈元柏, 欧阳群

Signal and pointing accuracy of ultraviolet laser in micro-pattern gaseous detector

Wang Hai-Yun, Qi Hui-Rong, Liu Ling, Yuan Zhi-Yang, Zhang Yu-Lian, Wen Zhi-Wen, Zhang Jian, Chen Yuan-Bo, Ouyang Qun
PDF
HTML
导出引用
  • 在气体探测器研究中, 利用266 nm紫外激光的双光子电离物理机制使气体电离产生可测量的信号, 是一种重要的标定方法. 随着微结构气体探测器(MPGD)的不断发展, 用紫外激光标定来实现较高精度位置分辨率成为了一种研究需求, 对此有两个关键技术问题需要解决: 实验研究激光可测信号大小以及激光指向精度. 分析和模拟计算了紫外光电离信号大小和激光调光误差, 基于微结构气体电子倍增器探测器与266 nm波长激光束, 在工作气体Ar/CO2(70/30)中, 测量了不同光斑面积与输出信号的关系; 设计和研制了紫外激光调光系统, 实验测量了紫外光调光偏差. 模拟结果与实验结果对比分析表明: 紫外激光束作用于气体探测器, 探测器增益在5000, 前放增益为10 mV/fC时, 6 mm读出条宽输出信号幅度约400 mV; 在探测器内传播距离为400 mm时, 较短时间内(10—20 min)实验调光指向精度可以保证小于5′, 引入z向偏差最大可以达到0.33 mm, 对应z向漂移速度的测量相对误差为6.4 × 10 −4. 该研究为MPGD与紫外激光标定实验设计提供主要的设计参考.
    In the study of the gas detectors, it is an important calibration method to use the ultraviolet (UV) laser with two-photon ionization mechanism for producing ionized signal. In the last decades, micro pattern gas detector, especially gaseous electron multiplier and micromesh gaseous detector, has been widely used in high energy experiments. These kinds of gaseous detectors have the advantages of higher ion backflow suppression ability, smaller E × B effect and good radiation resistance under the relatively higher count rate environment. To obtain a higher spatial resolution with a UV laser calibration system in gaseous electron multiplier detector, two critical technical issues remain to be resolved: the measurability of the laser signal and the accuracy of the laser beam position. In this paper, the studies in simulation and experiment are conducted to discuss these two critical questions. In the simulation section, the simulation results provide an estimation of signal in the gaseous electron multiplier detector with UV laser of 266 nm wavelength in the mixture working gases of Ar/CO2 (70/30), and give an evaluation of the laser pointing accuracy and the possible relative error of the electron drift velocity. In the experiment section, a UV laser calibration prototype is designed and developed. A pulsed laser of 266 nm wavelength is used as a signal source, which has a Gaussian-like cross section with a frequency of 10 Hz. The experimental results indicate that the signal of the UV laser in a triple gaseous electron multiplier detector reaches 400 mV for a readout strip width of 6 mm, a gain of detector of 5000, and a gain of amplifier of 10 mV/fC. For the calibration laser, the angle accuracy is discussed and tested. The angle uncertainty of the laser can be kept under 5′, and the accuracy of the drift velocity can reach 6.4 × 10−4 with a shift of 0.33 mm in the z direction when the laser beam transmits a distance of 400 mm in the gas chamber. All of these results show that the laser beam specific parameters are the main reference for designing the prototype detector. According to the optimal parameters, a gaseous prototype detector will be tested in the next study.
      通信作者: 祁辉荣, qihr@ihep.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0400400)和国家自然科学基金(批准号: 11675197, 11775242)资助的课题.
      Corresponding author: Qi Hui-Rong, qihr@ihep.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0400400) and the National Natural Science Foundation of China (Grant Nos. 11675197, 11775242).
    [1]

    Leonard A 2015 Ph. D. Dissertation (Bruxelles: Université Libre de Bruxelles)

    [2]

    Delbart A, de Oliveira R, Derre J, Giomataris Y, Jeanneau F, Papadopoulos Y, Rebourgeard Ph 2001 Nucl. Instrum. Methods A 461 84Google Scholar

    [3]

    Zibell A 2014 J. Instrum. 9 C08013Google Scholar

    [4]

    Sauli F 2002 Nucl. Instrum. Methods A 477 1Google Scholar

    [5]

    Sauli F 1997 Nucl. Instrum. Methods A 386 531Google Scholar

    [6]

    Chernyshova M, Czarski T, Dominik W, Jakubowska K, Rzadkiewicz J, Scholz M, Pozniak K, Kasprowicz G, Zabolotny W 2014 J. Instrum. 9 C03003Google Scholar

    [7]

    Giomataris I, Oliveira R D, Andriamonje S, Aune S, Charpak G, Colas P, Fanourakis G, Ferrer E, Giganon A, Rebourgeard Ph, Salin P 2006 Nucl. Instrum. Methods A 560 405Google Scholar

    [8]

    Giomataris, Y 1998 Nucl. Instrum. Methods A 419 239Google Scholar

    [9]

    Colas P, Giomataris I, Lepeltier V 2004 Nucl. Instrum. Methods A 535 226Google Scholar

    [10]

    The LHCb collaboration 2015 Int. J. Mod. Phys. A 30 1530022Google Scholar

    [11]

    Balla A, Bencivenni G, Branchini P, Ciambrone P, Czerwinski E, de Lucia E, Cicco A, Di Domenici D, Felici G, Morello G 2017 Nucl. Instrum. Methods A 845 266Google Scholar

    [12]

    Dørheim S 2012 J. Instrum. 7 C03011

    [13]

    Adinoff B, Kramer G L, Petty F 2007 Nucl. Instrum. Methods A 577 455Google Scholar

    [14]

    Ketzer B, Weitzel Q, Paul S, Sauli F, Ropelewski L 2004 Nucl. Instrum. Methods A 535 314Google Scholar

    [15]

    Hilke H J 2010 Rep. Prog. Phys. 73 116201Google Scholar

    [16]

    Attie D 2009 Nucl. Instrum. Methods A 598 89Google Scholar

    [17]

    Kane S, May J, Miyamoto J, Shipsey I 2003 Nucl. Instrum. Methods A 505 215Google Scholar

    [18]

    Hilke H J 1986 Nucl. Instrum. Methods A 252 169Google Scholar

    [19]

    Renault G, Nielsen B S, Westergaard J, Gaardhoje J J 2005 Czech. J. Phys. 55 1671Google Scholar

    [20]

    Antończyk D, Baechler J, Bramm R, Campagnolo R, Christiansen P, Frankenfeld U, Gonzalez Gutierrez C, Ivanov M, Kowalski M, Musa L, Przybyla A 2006 Nucl. Instrum. Methods A 565 551Google Scholar

    [21]

    Wikipedia https://en.wikipedia.org/wiki/Gaussian_beam [2018-08-30]

    [22]

    祁金刚, 李春杰 2007 物理实验 27 34Google Scholar

    Qi J G, Li C J 2007 Physics Experimentation 27 34Google Scholar

    [23]

    王小胡, 王守印, 周虎, 张余彬 2006 仪器仪表学报 27 980Google Scholar

    Wang X H, Wang S Y, Zhou H, Zhang Y B 2006 Chinese Journal of Scientific Instrument 27 980Google Scholar

  • 图 1  高斯光束能量分布

    Fig. 1.  Energy profile of the Gaussian laser beam.

    图 2  气体探测器内激光光路调光示意图

    Fig. 2.  Diagram of laser beam track in gas detector.

    图 3  激光调光精度与漂移速度相对精度的关系

    Fig. 3.  Angle uncertainty of laser beam with relative accuracy of drift velocity.

    图 4  激光性能测试探测器模块装置示意图

    Fig. 4.  Diagram of performance test detector module with laser system.

    图 5  多道能量刻度曲线(a)和55Fe/激光源(266 nm)能谱图(b)

    Fig. 5.  Calibration curves of multiple channel energy (a) and energy spectra of 55Fe/laser (266 nm) sources (b).

    图 6  激光性能测试实验系统实物图和示意图

    Fig. 6.  Experiment photo and diagram of performance test with laser device.

    图 7  激光输出能量刻度图

    Fig. 7.  Calibration diagram of laser output energy.

    图 8  激光电离信号 (a)激光电离信号随光斑面积变化; (b)典型的激光电离信号

    Fig. 8.  Signal of laser: (a) Variation of laser signals with plot area; (b) typical signal of laser beam.

    图 9  激光调光系统装置图与调光示意图 (a)调光系统; (b) 45°反射镜s4粗调时平行光管内图像; (c) 45°反射镜细调后平行光管内反射图像

    Fig. 9.  Installation photos of laser dimming system and diagram of dimming: (a) Dimming system; (b) image in 45° collimator when s4 is adjusted rough; (c) image in 45° collimator when s4 is adjusted fine).

    Baidu
  • [1]

    Leonard A 2015 Ph. D. Dissertation (Bruxelles: Université Libre de Bruxelles)

    [2]

    Delbart A, de Oliveira R, Derre J, Giomataris Y, Jeanneau F, Papadopoulos Y, Rebourgeard Ph 2001 Nucl. Instrum. Methods A 461 84Google Scholar

    [3]

    Zibell A 2014 J. Instrum. 9 C08013Google Scholar

    [4]

    Sauli F 2002 Nucl. Instrum. Methods A 477 1Google Scholar

    [5]

    Sauli F 1997 Nucl. Instrum. Methods A 386 531Google Scholar

    [6]

    Chernyshova M, Czarski T, Dominik W, Jakubowska K, Rzadkiewicz J, Scholz M, Pozniak K, Kasprowicz G, Zabolotny W 2014 J. Instrum. 9 C03003Google Scholar

    [7]

    Giomataris I, Oliveira R D, Andriamonje S, Aune S, Charpak G, Colas P, Fanourakis G, Ferrer E, Giganon A, Rebourgeard Ph, Salin P 2006 Nucl. Instrum. Methods A 560 405Google Scholar

    [8]

    Giomataris, Y 1998 Nucl. Instrum. Methods A 419 239Google Scholar

    [9]

    Colas P, Giomataris I, Lepeltier V 2004 Nucl. Instrum. Methods A 535 226Google Scholar

    [10]

    The LHCb collaboration 2015 Int. J. Mod. Phys. A 30 1530022Google Scholar

    [11]

    Balla A, Bencivenni G, Branchini P, Ciambrone P, Czerwinski E, de Lucia E, Cicco A, Di Domenici D, Felici G, Morello G 2017 Nucl. Instrum. Methods A 845 266Google Scholar

    [12]

    Dørheim S 2012 J. Instrum. 7 C03011

    [13]

    Adinoff B, Kramer G L, Petty F 2007 Nucl. Instrum. Methods A 577 455Google Scholar

    [14]

    Ketzer B, Weitzel Q, Paul S, Sauli F, Ropelewski L 2004 Nucl. Instrum. Methods A 535 314Google Scholar

    [15]

    Hilke H J 2010 Rep. Prog. Phys. 73 116201Google Scholar

    [16]

    Attie D 2009 Nucl. Instrum. Methods A 598 89Google Scholar

    [17]

    Kane S, May J, Miyamoto J, Shipsey I 2003 Nucl. Instrum. Methods A 505 215Google Scholar

    [18]

    Hilke H J 1986 Nucl. Instrum. Methods A 252 169Google Scholar

    [19]

    Renault G, Nielsen B S, Westergaard J, Gaardhoje J J 2005 Czech. J. Phys. 55 1671Google Scholar

    [20]

    Antończyk D, Baechler J, Bramm R, Campagnolo R, Christiansen P, Frankenfeld U, Gonzalez Gutierrez C, Ivanov M, Kowalski M, Musa L, Przybyla A 2006 Nucl. Instrum. Methods A 565 551Google Scholar

    [21]

    Wikipedia https://en.wikipedia.org/wiki/Gaussian_beam [2018-08-30]

    [22]

    祁金刚, 李春杰 2007 物理实验 27 34Google Scholar

    Qi J G, Li C J 2007 Physics Experimentation 27 34Google Scholar

    [23]

    王小胡, 王守印, 周虎, 张余彬 2006 仪器仪表学报 27 980Google Scholar

    Wang X H, Wang S Y, Zhou H, Zhang Y B 2006 Chinese Journal of Scientific Instrument 27 980Google Scholar

  • [1] 程凯, 魏鑫, 曾德凯, 季选韬, 朱坤, 王晓冬. 基于微结构气体探测器对单能和连续谱快中子的模拟解谱.  , 2021, 70(11): 112901. doi: 10.7498/aps.70.20201954
    [2] 窦微, 浦双双, 牛娜, 曲大鹏, 孟祥峻, 赵岭, 郑权. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器.  , 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018
    [3] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响.  , 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [4] 刘永安, 鄢秋荣, 盛立志, 赵菲菲, 胡慧君, 赵宝升. 电荷云尺寸对紫外光子计数成像探测器性能的影响.  , 2011, 60(4): 048501. doi: 10.7498/aps.60.048501
    [5] 邓懿, 赵德刚, 吴亮亮, 刘宗顺, 朱建军, 江德生, 张书明, 梁骏吾. 器件参数对GaN基n+-GaN/i-Alx Ga1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响.  , 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [6] 李鸣, 戴长建, 谢军. 用双光子电离探测技术研究奇宇称的Sm原子光谱.  , 2010, 59(5): 3154-3161. doi: 10.7498/aps.59.3154
    [7] 周梅, 赵德刚. 以弱p型为有源区的新型p-n结构GaN紫外探测器.  , 2009, 58(10): 7255-7260. doi: 10.7498/aps.58.7255
    [8] 张爽, 赵德刚, 刘宗顺, 朱建军, 张书明, 王玉田, 段俐宏, 刘文宝, 江德生, 杨辉. 穿透型V形坑对GaN基p-i-n结构紫外探测器反向漏电的影响.  , 2009, 58(11): 7952-7957. doi: 10.7498/aps.58.7952
    [9] 刘欢, 巩马理. 紧凑型LD端面抽运Nd:YAG内腔三倍频准连续355 nm紫外激光器.  , 2009, 58(8): 5443-5449. doi: 10.7498/aps.58.5443
    [10] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化.  , 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [11] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响.  , 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [12] 周 梅, 常清英, 赵德刚. 一种减小GaN基肖特基结构紫外探测器暗电流的方法.  , 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [13] 谢自力, 张 荣, 修向前, 韩 平, 刘 斌, 陈 琳, 俞慧强, 江若琏, 施 毅, 郑有炓. 用于紫外探测器DBR结构的高质量AlGaN材料MOCVD生长及其特性研究.  , 2007, 56(11): 6717-6721. doi: 10.7498/aps.56.6717
    [14] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器.  , 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [15] 周 梅, 左淑华, 赵德刚. 一种新型GaN基肖特基结构紫外探测器.  , 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [16] 邹永刚, 刘冰冰, 姚明光, 侯元元, 王 霖, 于世丹, 王 鹏, 崔 田, 邹广田, B. Sundqvist, 王国瑞, 刘益春. 紫外激光和压力共同作用下C60-peapod的聚合相变研究.  , 2007, 56(9): 5172-5175. doi: 10.7498/aps.56.5172
    [17] 孙利群, 张彦鹏, 刘亚芳, 唐天同, 杨照金, 向世明. 自发参量下转换双光子场绝对校准光电探测器的方法研究.  , 2000, 49(4): 724-729. doi: 10.7498/aps.49.724
    [18] 陆庆正, 丁传凡, 高建谧, 孔繁敖. SiH4紫外多光子电离光谱的转动分析.  , 1991, 40(1): 39-42. doi: 10.7498/aps.40.39
    [19] 汪志诚. 双光子激光器的量子理论.  , 1991, 40(8): 1259-1279. doi: 10.7498/aps.40.1259-2
    [20] 朱荣, 韩景诚, 关一夫, 刘厚祥, 李书涛, 吴存恺. 乙醛紫外多光子电离动力学研究.  , 1987, 36(4): 459-466. doi: 10.7498/aps.36.459
计量
  • 文章访问数:  7789
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-29
  • 修回日期:  2018-11-18
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map