搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内部体积源作用下的圆柱壳内外声场特性

杨德森 张睿 时胜国

引用本文:
Citation:

内部体积源作用下的圆柱壳内外声场特性

杨德森, 张睿, 时胜国

Sound radiation from finite cylindrical shell excited by inner finite-size sources

Yang De-Sen, Zhang Rui, Shi Sheng-Guo
PDF
导出引用
  • 圆柱壳内各型体积源辐射噪声特性研究是声场建模和声场预报的前提.为了研究具有指向性的大尺度体积源特性对水下航行器结构内外声场的影响,本文结合薄壳理论、等效源和柱腔Green函数构造了体积源激励下的壳体振动耦合方程,研究了体积源表面声散射作用和指向性强弱对圆柱壳内外声场的影响.数值计算结果表明,体积源构造的准确性与其等效源位置有关,等效源配置在体积源几何中心与其结构表面之间0.4–0.6时,可以提高声场计算结果的准确性;大尺度体积源表面的声散射作用会导致壳体内部声场结构发生改变,内声场声腔共振峰发生偏移,并且在部分频段引起较强的声透射现象;此外,体积源指向性变化对壳体内外声场强弱影响较小,其显著作用表现在改变了外辐射声场的远场指向性.该研究结果对噪声预报和控制有一定的参考价值.
    The study of the characteristics of noise sources in cylindrical shells is the foundation of sound field prediction. Although noise sources are usually regarded as point sources to simplify the calculation model in noise source localization and waveguide sound propagation, the approximation is limited to far-field problems. For the near-field acoustics problems in engine room and ship cabin, the radiated noise possesses the spatial directivity because of the complex vibration distribution of the noise source surface. Moreover, the sound scattering on the surface of finite-size sources makes the noise source itself act not only as the energy input of sound field, but also as the scatterer to change the structure of sound field in the environment. These factors lead to large errors when the finite-size source is simplified into a point source. In order to explore the influence of finite-size source on the acoustic field inside and outside the underwater vehicle structure, the shell coupled equation is constructed by combining thin shell theory, equivalent source and Green function. The effects of source surface scattering and directivity on the acoustic field inside and outside the cylindrical shell are studied. The results show that the accuracy of finite-size source construction is related to the equivalent source location. It proves that equivalent source allocation should be arranged in the middle of the geometric center of sources and its structural surface. Sound scattering from the surface of the finite-size source will change the sound field inside the shell, and then the resonant peaks of the cavity are shifted to the high frequencies as the source volume increases, which causes a strong sound transmission phenomenon in some frequency bands. In addition, the directivity of the finite-size source has little effect on the intensity of the sound field inside and outside the shell, which is evident in changing the far-field directivity of the radiated sound field. The research results are valuable for noise prediction and noise control.
    [1]

    Dowell E H, Gorman G F, Smith D A 1977 J. Sound. Vib. 52 519

    [2]

    Dowell E H 1980 J. Aircraft 17 690

    [3]

    Fuller C R 1986 J. Sound. Vib. 109 259

    [4]

    Pan X, MacGillivray I, Tso Y, Peters H 2013 Proceedings of Acoustics 2013 Victor Harbor, Australia, November 17-20, 2013 p1

    [5]

    Koopmann G H, Song L, Fahnline J B 1989 J. Acoust. Soc. Am. 86 2433

    [6]

    Song L, Koopmann G H, Fahnline J B 1991 J. Acoust. Soc. Am. 89 2625

    [7]

    Vecherin S N, Wilson D K 2011 J. Acoust. Soc. Am. 130 3608

    [8]

    Pan X, Tso Y, Forrest J, Peters H 2014 Inter. Noise 2014 Melbourne, Australia, November 16-19, 2014 p4505

    [9]

    Bi C X, Chen X Z, Chen J 2008 J. Acoust. Soc. Am. 123 1472

    [10]

    Bi C X, Bolton J S 2012 J. Acoust. Soc. Am. 131 1260

    [11]

    Liu Y F, Bolton J S 2013 Proc. Mtgs. Acoust. 19 015130

    [12]

    Liu Y F, Bolton J S 2017 Noise Control Engr. J. 65 406

    [13]

    Bi C X, Jing W Q, Zhang Y B, Lin W L 2017 J. Sound. Vib. 386 149

    [14]

    Di X, Gilbert K E 1993 J. Acoust. Soc. Am. 93 714

    [15]

    Ochmann M 2004 J. Acoust. Soc. Am. 116 3304

    [16]

    Langrenne C, Melon M, Garcia A 2007 J. Acoust. Soc. Am. 121 2750

    [17]

    Woo H, Shin Y S 2016 J. Comput. Acoust. 24 1550021

    [18]

    Stepanishen P R 1982 J. Acoust. Soc. Am. 71 813

    [19]

    Gounot Y J R, Musafir R E 2007 J. Acoust. Soc. Am. 122 3195

  • [1]

    Dowell E H, Gorman G F, Smith D A 1977 J. Sound. Vib. 52 519

    [2]

    Dowell E H 1980 J. Aircraft 17 690

    [3]

    Fuller C R 1986 J. Sound. Vib. 109 259

    [4]

    Pan X, MacGillivray I, Tso Y, Peters H 2013 Proceedings of Acoustics 2013 Victor Harbor, Australia, November 17-20, 2013 p1

    [5]

    Koopmann G H, Song L, Fahnline J B 1989 J. Acoust. Soc. Am. 86 2433

    [6]

    Song L, Koopmann G H, Fahnline J B 1991 J. Acoust. Soc. Am. 89 2625

    [7]

    Vecherin S N, Wilson D K 2011 J. Acoust. Soc. Am. 130 3608

    [8]

    Pan X, Tso Y, Forrest J, Peters H 2014 Inter. Noise 2014 Melbourne, Australia, November 16-19, 2014 p4505

    [9]

    Bi C X, Chen X Z, Chen J 2008 J. Acoust. Soc. Am. 123 1472

    [10]

    Bi C X, Bolton J S 2012 J. Acoust. Soc. Am. 131 1260

    [11]

    Liu Y F, Bolton J S 2013 Proc. Mtgs. Acoust. 19 015130

    [12]

    Liu Y F, Bolton J S 2017 Noise Control Engr. J. 65 406

    [13]

    Bi C X, Jing W Q, Zhang Y B, Lin W L 2017 J. Sound. Vib. 386 149

    [14]

    Di X, Gilbert K E 1993 J. Acoust. Soc. Am. 93 714

    [15]

    Ochmann M 2004 J. Acoust. Soc. Am. 116 3304

    [16]

    Langrenne C, Melon M, Garcia A 2007 J. Acoust. Soc. Am. 121 2750

    [17]

    Woo H, Shin Y S 2016 J. Comput. Acoust. 24 1550021

    [18]

    Stepanishen P R 1982 J. Acoust. Soc. Am. 71 813

    [19]

    Gounot Y J R, Musafir R E 2007 J. Acoust. Soc. Am. 122 3195

  • [1] 商德江, 钱治文, 何元安, 肖妍. 基于联合波叠加法的浅海信道下圆柱壳声辐射研究.  , 2018, 67(8): 084301. doi: 10.7498/aps.67.20171963
    [2] 陈科, 王宏伟, 盛立, 尤云祥. 拖曳体激发内波时空特性实验及其理论模型.  , 2018, 67(3): 034701. doi: 10.7498/aps.67.20170920
    [3] 郭文杰, 李天匀, 朱翔, 屈凯旸. 部分浸没圆柱壳声固耦合计算的半解析法研究.  , 2018, 67(8): 084302. doi: 10.7498/aps.67.20172681
    [4] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究.  , 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [5] 田自宁, 陈伟, 韩斌, 田言杰, 刘文彪, 冯天成, 欧阳晓平. 基于放射性气体源体积的虚拟源刻度技术.  , 2016, 65(6): 062901. doi: 10.7498/aps.65.062901
    [6] 周建美, 张烨, 汪宏年, 杨守文, 殷长春. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应.  , 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [7] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场.  , 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [8] 曹钟, 杜平安, 聂宝林, 任丹, 张其道. 基于磁偶极子阵列的印制电路板干扰源等效建模方法.  , 2014, 63(12): 124102. doi: 10.7498/aps.63.124102
    [9] 赵晨, 蒋式勤, 石明伟, 朱俊杰. 非均匀电磁介质中的等效源重构.  , 2014, 63(7): 078702. doi: 10.7498/aps.63.078702
    [10] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究.  , 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [11] 毕传兴, 胡定玉, 张永斌, 徐亮. 基于等效源法和双面质点振速测量的声场分离方法.  , 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [12] 潘安, 范军, 卓琳凯. 准周期加隔板有限长圆柱壳声散射.  , 2013, 62(2): 024301. doi: 10.7498/aps.62.024301
    [13] 张鹏, 张晓娟. 基于等效电流源的分层媒质目标反演研究.  , 2013, 62(16): 164201. doi: 10.7498/aps.62.164201
    [14] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. J-PARC多峰离子源体积产生效率三维数值模拟研究.  , 2012, 61(18): 185204. doi: 10.7498/aps.61.185204
    [15] 潘安, 范军, 卓琳凯. 周期性加隔板有限长圆柱壳声散射.  , 2012, 61(21): 214301. doi: 10.7498/aps.61.214301
    [16] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. JAERI 10 A 离子源体积产生效率数值优化.  , 2012, 61(18): 185205. doi: 10.7498/aps.61.185205
    [17] 那仁满都拉, 韩元春. 非均匀圆柱壳中非线性波传播模型的同伦分析解法.  , 2010, 59(5): 2942-2947. doi: 10.7498/aps.59.2942
    [18] 尤云祥, 赵先奇, 陈科, 魏岗. 有限深密度分层流体中运动物体生成内波的一种等效质量源方法.  , 2009, 58(10): 6750-6760. doi: 10.7498/aps.58.6750
    [19] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究.  , 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [20] 王海龙, 吴 群, 孟繁义, 李乐伟. 线电流源激励下无耗异向介质层覆盖导体圆柱电磁特性的研究.  , 2007, 56(5): 2608-2615. doi: 10.7498/aps.56.2608
计量
  • 文章访问数:  6090
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-16
  • 修回日期:  2018-10-11
  • 刊出日期:  2019-12-20

/

返回文章
返回
Baidu
map