搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于瞬态光栅频率分辨光学开关装置的阿秒延时相位控制

黄沛 方少波 黄杭东 赵昆 滕浩 侯洵 魏志义

引用本文:
Citation:

基于瞬态光栅频率分辨光学开关装置的阿秒延时相位控制

黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义

Attosecond relative delay measurement using transient-grating frequency-resolved optical grating

Huang Pei1\2\3, Fang Shao-Bo, Huang Hang-Dong, Zhao Kun, Teng Hao, Hou Xun, Wei Zhi-Yi2\3
PDF
导出引用
  • 操控多路激光脉冲之间的相对延时(相对相位)对于亚周期相干合成技术意义重大.当周期量级脉冲之间的相对延时接近数十飞秒时,常见的飞秒脉冲测量手段已无法满足脉冲之间相对相位的精确调控需求.本文基于瞬态光栅频率分辨光学开关装置,精确反演出脉冲之间的相对相位.此方案不仅有助于直接产生亚周期(亚飞秒)脉冲,还可应用于时间隐身学和二维相干光谱学等相关领域.
    The accurate and precise controlling of the attosecond time delay between the sub-pulses within a hundredth of an optical cycle is the key ingredient for the sophisticated custom-tailored coherent waveform synthesizer. The attosecond delay control technique commonly experiences the “complete” characterization of the ultrashort sub-cycle pulses, which includes the spatiotemporal pulse characterization of the synthesized waveform and the attosecond relative delay between the parent pulses. In this work, the relative time delay between spectrally separated ultrashort parent pulses is characterized in an interferometer scheme with a background-free transient-grating frequency-resolved optical grating (TG-FROG). The TG-FROG geometry accurately measures the full time-dependent intensity and phase of ultrashort laser pulses in a wide range of regime (from ultraviolet to infrared) and offers significant advantages over other nonlinear-optical processes geometries (i.e., the polarization-gate-FROG, the self-diffraction-FROG, the second-harmonic generation-FROG and the third-harmonic-generation-FROG). The attosecond measurement accuracy is achieved for the first time, to the best of our knowledge. In this experiment, the output of a carrier-envelope-phase-stable Ti:sapphire amplifier (sub-30-fs, over-1-mJ, 1 kHz) is spectrally broadened in a neon-filled hollow-core fiber with an inner diameter of 250μm. The transmission through the pressure-gradient hollow-core fiber results in an mJ-level octave-spanning whitelight supercontinuum, supporting a sub-3-fs Fourier transform-limited pulse. The supercontinuum is spectrally divided into two parent pulses by using a dichroic mirror. The sub-pulses are individually compressed by the custom-designed double-chirped mirrors and wedge pairs. The short and long wavelength pulses are separately compressed in few-cycle regime, yielding pulses with 6.7 fs and 9.8 fs, respectively. This technique overcomes the bottlenecks in the traditional delay measurement and should be applicable for many ultra-broadband pulse characterizations with extremely simple and alignment-free delay control device used. Furthermore, this new method will be easily adapted for the ultra-broadband two-dimensional electronic spectroscopy, the advanced temporal cloaking, and the field of sub-cycle arbitrary coherent waveform synthesizer for controlling strong-field interactions in atoms, molecules, solids, and nanostructures. We foresee that in the near future this novel technology will be very attractive for various applications in the next-generation light sources such as the Synergetic Extreme Condition User Facility in Beijing, China.
      通信作者: 方少波, shaobo.fang@iphy.ac.cn;zywei@iphy.ac.cn ; 魏志义, shaobo.fang@iphy.ac.cn;zywei@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFC0110301)、国家自然科学基金(批准号:61575219)、中国科学院战略性先导科技专项(B类)(批准号:XDB23030230)、中国科学院前沿科学重点研究计划(批准号:YZDJ-SSW-JSC00)和中国科学院青年创新促进会(批准号:2018007)资助的课题.
      Corresponding author: Fang Shao-Bo, shaobo.fang@iphy.ac.cn;zywei@iphy.ac.cn ; Wei Zhi-Yi2\3, shaobo.fang@iphy.ac.cn;zywei@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFC0110301), the National Natural Science Foundation of China (Grant No. 61575219), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB23030230), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. YZDJ-SSW-JSC006), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2018007).
    [1]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66

    [2]

    Huang S W, Cirmi G, Moses J, Hong K H, Bhardwaj S, Birge J R, Chen L J, Li E, Eggleton B J, Cerullo G, Kartner F X 2011 Nat. Photon. 5 475

    [3]

    Manzoni C, Mucke O D, Cirmi G, Fang S, Moses J, Huang S W, Hong K H, Cerullo G, Kartner F X 2015 Laser Photon. Rev. 9 129

    [4]

    Mucke O D, Fang S B, Cirmi G, Maria Rossi G, Chia S H, Ye H, Yang Y D, Mainz R, Manzoni C, Farinello P, Cerullo G, Kartner F X 2015 IEEE J. Sel. Top. Quantum Eletron. Electron. 21 8700712

    [5]

    Fang S, Cirmi G, Chia S, Mucke O D, Kärtner F X, Manzoni C, Farinello P, Cerullo G 2013 Conference on Lasers and Electro-Optics Pacific Rim (OSA) Kyoto, Japan, June 30-July 4, 2013 pWB3_1

    [6]

    Schmid B E, Thire N, Boivin M, Laramee A, Poitras F, Lebrun G, Ozaki T, Ibrahim H, Legare F 2014 Nat. Commun. 5 3643

    [7]

    Krogen P, Suchowski H, Liang H, Flemens N, Hong K H, Kärtner F X, Moses J 2017 Nat. Photon. 11 222

    [8]

    Fang S, Tanigawa T, Ishikawa K L, Karasawa N, Yamashita M 2011 J. Opt. Soc. Am. B 28 1

    [9]

    Wei P F, Miao J, Zeng Z N, Li C, Ge X C, Li R X, Xu Z Z 2013 Phys. Rev. Lett. 110 233903

    [10]

    Takahashi E J, Lan P, Mucke O D, Nabekawa Y, Midorikawa K 2013 Nat. Commun. 4 2691

    [11]

    Jin C, Wang G, Wei H, Le A T, Lin C D 2014 Nat. Commun. 5 4003

    [12]

    Hassan M T, Wirth A, Grguras I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301

    [13]

    Schibli T R, Kim J, Kuzucu O, Gopinath J T, Tandon S N, Petrich G S, Kolodziejski L A, Fujimoto J G, Ippen E P, Kaertner F X 2003 Opt. Lett. 28 947

    [14]

    Manzoni C, Huang S W, Cirmi G, Farinello P, Moses J, Kärtner F X, Cerullo G 2012 Opt. Lett. 37 1880

    [15]

    Fang S, Mainz R, Rossi G M, Yang Y, Cirmi G, Chia S, Manzoni C, Cerullo G, Mucke O D, Kartner F X 2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference Munich, Germany, June 21-25, 2015 pCG_P_4

    [16]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [17]

    Trebino R, DeLong K W, Fittinghoff D N, Sweetser J N, Krumbugel M A, Richman B A 1997 Rev. Sci. Instrum. 68 3277

    [18]

    Liu J, Li F J, Jiang Y L, Li C, Leng Y X, Kobayashi T, Li R X, Xu Z Z 2012 Opt. Lett. 37 4829

    [19]

    Zhu W D, Wang R, Zhang C F, Wang G D, Liu Y L, Zhao W, Dai X C, Wang X Y, Cerullo G, Cundiff S, Xiao M 2017 Opt. Express 25 21115

    [20]

    Fridman M, Farsi A, Okawachi Y, Gaeta A L 2012 Nature 481 62

  • [1]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66

    [2]

    Huang S W, Cirmi G, Moses J, Hong K H, Bhardwaj S, Birge J R, Chen L J, Li E, Eggleton B J, Cerullo G, Kartner F X 2011 Nat. Photon. 5 475

    [3]

    Manzoni C, Mucke O D, Cirmi G, Fang S, Moses J, Huang S W, Hong K H, Cerullo G, Kartner F X 2015 Laser Photon. Rev. 9 129

    [4]

    Mucke O D, Fang S B, Cirmi G, Maria Rossi G, Chia S H, Ye H, Yang Y D, Mainz R, Manzoni C, Farinello P, Cerullo G, Kartner F X 2015 IEEE J. Sel. Top. Quantum Eletron. Electron. 21 8700712

    [5]

    Fang S, Cirmi G, Chia S, Mucke O D, Kärtner F X, Manzoni C, Farinello P, Cerullo G 2013 Conference on Lasers and Electro-Optics Pacific Rim (OSA) Kyoto, Japan, June 30-July 4, 2013 pWB3_1

    [6]

    Schmid B E, Thire N, Boivin M, Laramee A, Poitras F, Lebrun G, Ozaki T, Ibrahim H, Legare F 2014 Nat. Commun. 5 3643

    [7]

    Krogen P, Suchowski H, Liang H, Flemens N, Hong K H, Kärtner F X, Moses J 2017 Nat. Photon. 11 222

    [8]

    Fang S, Tanigawa T, Ishikawa K L, Karasawa N, Yamashita M 2011 J. Opt. Soc. Am. B 28 1

    [9]

    Wei P F, Miao J, Zeng Z N, Li C, Ge X C, Li R X, Xu Z Z 2013 Phys. Rev. Lett. 110 233903

    [10]

    Takahashi E J, Lan P, Mucke O D, Nabekawa Y, Midorikawa K 2013 Nat. Commun. 4 2691

    [11]

    Jin C, Wang G, Wei H, Le A T, Lin C D 2014 Nat. Commun. 5 4003

    [12]

    Hassan M T, Wirth A, Grguras I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301

    [13]

    Schibli T R, Kim J, Kuzucu O, Gopinath J T, Tandon S N, Petrich G S, Kolodziejski L A, Fujimoto J G, Ippen E P, Kaertner F X 2003 Opt. Lett. 28 947

    [14]

    Manzoni C, Huang S W, Cirmi G, Farinello P, Moses J, Kärtner F X, Cerullo G 2012 Opt. Lett. 37 1880

    [15]

    Fang S, Mainz R, Rossi G M, Yang Y, Cirmi G, Chia S, Manzoni C, Cerullo G, Mucke O D, Kartner F X 2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference Munich, Germany, June 21-25, 2015 pCG_P_4

    [16]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [17]

    Trebino R, DeLong K W, Fittinghoff D N, Sweetser J N, Krumbugel M A, Richman B A 1997 Rev. Sci. Instrum. 68 3277

    [18]

    Liu J, Li F J, Jiang Y L, Li C, Leng Y X, Kobayashi T, Li R X, Xu Z Z 2012 Opt. Lett. 37 4829

    [19]

    Zhu W D, Wang R, Zhang C F, Wang G D, Liu Y L, Zhao W, Dai X C, Wang X Y, Cerullo G, Cundiff S, Xiao M 2017 Opt. Express 25 21115

    [20]

    Fridman M, Farsi A, Okawachi Y, Gaeta A L 2012 Nature 481 62

  • [1] 王井上, 张瑶, 王军利, 魏志义, 常国庆. 飞秒光纤激光相干合成技术最新进展.  , 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
    [2] 钟哲强, 母杰, 王逍, 张彬. 基于紧聚焦方式的阵列光束相干合成特性分析.  , 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [3] 彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成. 相干合成涡旋光束的螺旋谱分析及应用研究.  , 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [4] 黄沛, 方少波, 黄杭东, 侯洵, 魏志义. 基于平衡光学互相关方法的超短脉冲激光相干合成技术.  , 2018, 67(24): 244204. doi: 10.7498/aps.67.20181851
    [5] 耿超, 罗文, 谭毅, 刘红梅, 牟进博, 李新阳. 基于自适应桶中功率评价函数的光纤放大器相干合成实验研究.  , 2013, 62(22): 224202. doi: 10.7498/aps.62.224202
    [6] 周泽民, 曾新吾, 龚昌超, 赵云, 田章福. 大功率调制气流声源阵列的相干合成实验研究.  , 2013, 62(13): 134305. doi: 10.7498/aps.62.134305
    [7] 李建龙, 冯国英, 周寿桓, 李玮. 单口径相干合成系统激光光束的M2因子研究.  , 2012, 61(9): 094206. doi: 10.7498/aps.61.094206
    [8] 耿超, 李新阳, 张小军, 饶长辉. 基于目标在回路的三路光纤传输激光相干合成实验.  , 2012, 61(3): 034204. doi: 10.7498/aps.61.034204
    [9] 粟荣涛, 周朴, 王小林, 冀翔, 许晓军. 不同波形脉冲激光的时域误差对相干合成的影响.  , 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [10] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响.  , 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [11] 耿超, 李新阳, 张小军, 饶长辉. 倾斜相差对光纤激光相干合成的影响与模拟校正.  , 2011, 60(11): 114202. doi: 10.7498/aps.60.114202
    [12] 张慧, 卢娟, 文锦辉, 雷亮, 焦中兴, 赖天树. 不同波长飞秒脉冲的相位测量.  , 2011, 60(12): 124211. doi: 10.7498/aps.60.124211
    [13] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成.  , 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [14] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统.  , 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [15] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验.  , 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [16] 文锦辉, 刘俊, 张慧, 陈佳龙, 黄梓柱, 焦中兴, 赖天树. 改进型零附加相位光谱相位相干电场重构系统对啁啾脉冲的测量.  , 2010, 59(1): 370-375. doi: 10.7498/aps.59.370
    [17] 雷 亮, 文锦辉, 焦中兴, 赖天树, 林位株. 飞秒脉冲振幅和相位的无干涉条纹重构法测量.  , 2008, 57(1): 307-312. doi: 10.7498/aps.57.307
    [18] 文锦辉, 雷 亮, 焦中兴, 赖天树, 林位株. 两种光谱相位相干电场重构法对复杂脉冲测量的准确度比较.  , 2006, 55(4): 1883-1888. doi: 10.7498/aps.55.1883
    [19] 雷 亮, 文锦辉, 焦中兴, 寿 倩, 吴 羽, 刘鲁宁, 赖天树, 林位株. 无干涉条纹的光谱位相相干直接电场重构法.  , 2006, 55(1): 244-248. doi: 10.7498/aps.55.244
    [20] 柴路, 何铁英, 杨胜杰, 王清月, 张志刚. 光谱位相干涉仪参数的优化选取.  , 2004, 53(1): 114-118. doi: 10.7498/aps.53.114
计量
  • 文章访问数:  5920
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-21
  • 修回日期:  2018-08-31
  • 刊出日期:  2018-11-05

/

返回文章
返回
Baidu
map