搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

-(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算

李小影 黄灿 朱岩 李晋斌 樊济宇 潘燕飞 施大宁 马春兰

引用本文:
Citation:

-(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算

李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰

Dzyaloshinsky-Moriya interaction in -(Zn, Cr)S(111) surface: First principle calculations

Li Xiao-Ying, Huang Can, Zhu Yan, Li Jin-Bin, Fan Ji-Yu, Pan Yan-Fei, Shi Da-Ning, Ma Chun-Lan
PDF
导出引用
  • 根据密度泛函理论的第一性原理计算了具有非中心反演对称的异质结-(Zn,Cr)S(111)体系的原子结构和电子结构.Cr原子之间通过第一层S原子传递磁性相互作用.结合广义布洛赫条件,又进一步计算了反方向的自旋螺旋能量与波矢的色散关系E(q)与E(-q).E(q)与E(-q)能量之差反映了-(Zn,Cr)S(111)的S层与Cr层之间空间反演对称性破缺引起的DMI的大小.通过海森伯相互作用(HBI)模型与Dzyaloshinsky-Moriya作用(DMI)模型拟合第一性原理计算值,得到了Cr原子间各近邻的HBI参数J1-J4与DMI参数d1,d2.在-(Zn,Cr)S(111)中,Cr原子间的耦合为M型反铁磁.DMI参数d1为-0.53 meV,为顺时针手性DMI,在-(Zn,Cr)S(111)界面上有可能会产生斯格明子.本文计算表明,磁性和非磁性半导体界面有可能存在DMI,为理论研究和磁存储技术的进步开拓一个新的方向.
    According to density functional theory calculations, we elucidate the atomic and electronic structure of -(Zn, Cr)S(111) surface. The magnetic interaction between Cr atoms is via S atoms close to the Cr layer. This interaction is shown by the analysis of spin charge contour plot and partial density of states (DOS) of each atom. The DOSs of other S atoms are non magnetic and have no magnetic exchange with the Cr layer. E(q) and E(-q) are the dispersions between energy E and wave vector q of spin spiral in the opposite directions. They are calculated with generalized Bloch equations and all the magnetic moments of Cr atoms are arranged in the plane perpendicular to the -(Zn, Cr)S(111) film. The differences between E(q) and E(-q) are caused by the interface of -(Zn, Cr)S(111), where the symmetry of space perpendicular to the film is broken. Effective Heisenberg exchange interaction (HBI) and Dzyaloshinsky-Moriya interaction (DMI) parameters between different neighbors (Ji and di) are derived by well fitting the ab initio spin spiral dispersion E(q) to HBI with DMI model and E(q)-E(-q) to DMI model, respectively. The J2 plays a major role with a large negative value of -9.04 meV. The J1 is about 2/5 of J2, and J3 is about 1/4 of J2 with positive value. The DMI d1 is -0.53 meV, and d2 is 0.07 meV. With these HBI parameters, E(0) is the largest one at which -(Zn, Cr)S(111) has no ferromagnetic interface. The E(q) has its lowest energy with the q at M=b1/2 in the first Brillouin zone. Hence, -(Zn, Cr)S(111) is an M-type antiferromagnetic (AFM) material. In this type of AFM configuration, magnetic moments of Cr atom in a line along b2 are parallel to each other, and antiparallel to the magnetic moments in adjacent lines. The E(q) at K=b1/2+ b2/2 is almost as large as that at point. The value of DMI parameter d1 is about 1/5 of that on Co/Pt3 interface and 1/2 of Co/graphene. However, it is a negative number, which shows the clockwise chirality. The -(Zn, Cr)S(111) interface has obvious DMI, and skyrmion may be formed at this transition-metal/semiconductor (TM/S) interface. It is a good option to search for DMI in different kinds of TM/S heterojunctions. The material that combines the advantage of heterojunction, and DMI may have new magnetic phenomenon, which is usefulfor the magnetic storage. This paper enriches the research on DMI.
      通信作者: 朱岩, yzhu@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11204131,11374159)、江苏省高等学校自然科学研究重大项目(批准号:17KJA140001)和江苏省六大人才高峰高层次人才项目(批准号:XCL-078)资助的课题.
      Corresponding author: Zhu Yan, yzhu@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204131, 11374159), NSF of Jiangsu Higher Education Institutions, China (Grant No. 17KJA140001), and Six Talent Peaks Project of Jiangsu, China (Grant No. XCL-078).
    [1]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [2]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [3]

    Yu X Z, DeGrave J P, Hara T, Hara Y, Jin S, Tokura Y 2013 Nano Lett. 13 3755

    [4]

    Du H F, DeGrave J P, Xue F, Liang D, Ning W, Yang J Y, Tian M L, Zhang Y H, Jin S 2014 Nano Lett. 14 2026

    [5]

    Skyrme T H R A 1962 Nucl. Phys. 31 556

    [6]

    Honolka J, Lee T Y, Kuhnke K, Enders A, Skomski R, Bornemann S, Mankovsky S, Minr J, Staunton J, Ebert H, Hessler M, Fauth K, Schtz G, Buchsbaum A, Schmid M, Varga P, Kern K 2009 Phys. Rev. Lett. 102 067207

    [7]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [8]

    Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K V, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [9]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [10]

    Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y, Yang H 2017 Nat. Commun. 8 14761

    [11]

    Wells A W J, Shepley P M, Marrows C H, Moore T A 2017 Phys. Rev. B 95 054428

    [12]

    Hellman F, Hoffmann A, Tserkovnyak Y, Beach G S D, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Drr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimmel A V, Koopmans B, Krivorotov I N, May S J, Petford-Long A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiaville A, Zink B L 2017 Rev. Mod. Phys. 89 025006

    [13]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [14]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [15]

    Moriya T 1960 Phys. Rev. 120 91

    [16]

    Shu L, Chen Y G, Chen H 2002 Acta Phys. Sin. 51 902 (in Chinese) [殳蕾,陈宇光,陈鸿 2002 51 902]

    [17]

    Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267 (in Chinese) [蔡卓,陆文彬,刘拥军 2008 57 7267]

    [18]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) [张丽英,周斌 2011 60 120301]

    [19]

    Luo Y M, Zhou C, Won C, Wu Y Z 2014 AIP Adv. 4 047136

    [20]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [21]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [22]

    Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Nano Lett. 12 1673

    [23]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411

    [24]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [25]

    Xie K X, Sang H 2014 J. Appl. Phys. 116 223901

    [26]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Pear J E 2015 Science 349 283

    [27]

    Luchaire C M, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotech. 11 444

    [28]

    Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D D S, Locatelli A, Menteș T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussign Y, Stashkevich A, Chrif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotech. 11 449

    [29]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [30]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [31]

    Yang H X, Chen G, Cotta A A C, Alpha T, Diaye N, Nikolaev S A, Soares E A, Macedo W A A, Schmid A K, Fert A, Chshiev M 2017 ArXiv 1704 09023

    [32]

    Sanvito S, Hill N A 2001 Phys. Rev. Lett. 87 267202

    [33]

    Fan S W, Yao K L, Liu Z L 2009 Appl. Phys. Lett. 94 152506

    [34]

    Saito H, Zayets V, Yamagata S, Ando K 2003 Phys. Rev. Lett. 90 207202

    [35]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Yang H X, Boulle O, Cros V, Fert A, Chshiev M 2016 ArXiv 1603 01847

    [38]

    Zhu Y, Ma C L, Shi D N, Zhang K C 2014 Phys. Lett. A 378 2234

    [39]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [40]

    Pan Y, Zhu Y, Shi D N, Wei X Y, Ma C L, Zhang K C 2015 J. Alloys Compd. 644 341

    [41]

    Marsman M, Hafner J 2002 Phys. Rev. B 66 224409

    [42]

    Hobbs D, Kresse G, Hafner J 2000 Phys. Rev. B 62 11556

    [43]

    Mryasov O N, Lichtenstein A I, Sandratskii L M, Gubanov V A 1991 J. Phys. Condens. Matter 3 8565

    [44]

    Knpfle K, Sandratskii L M, Kbler J 2000 Phys. Rev. B 62 5564

    [45]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nat. Mater. 12 611

    [46]

    Zhang X, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795

    [47]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [48]

    Dup B, Hoffmann M, Paillard C, Heinze S 2014 Nat. Commun. 5 4030

    [49]

    Hu X X, Zhao J, Gao W 2017 Chin.Phys. B 26 079101

    [50]

    Shang J X, Liu K, Wang F H 2017 Acta Phy. Sin. 66 216801

  • [1]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [2]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [3]

    Yu X Z, DeGrave J P, Hara T, Hara Y, Jin S, Tokura Y 2013 Nano Lett. 13 3755

    [4]

    Du H F, DeGrave J P, Xue F, Liang D, Ning W, Yang J Y, Tian M L, Zhang Y H, Jin S 2014 Nano Lett. 14 2026

    [5]

    Skyrme T H R A 1962 Nucl. Phys. 31 556

    [6]

    Honolka J, Lee T Y, Kuhnke K, Enders A, Skomski R, Bornemann S, Mankovsky S, Minr J, Staunton J, Ebert H, Hessler M, Fauth K, Schtz G, Buchsbaum A, Schmid M, Varga P, Kern K 2009 Phys. Rev. Lett. 102 067207

    [7]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [8]

    Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K V, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [9]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [10]

    Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y, Yang H 2017 Nat. Commun. 8 14761

    [11]

    Wells A W J, Shepley P M, Marrows C H, Moore T A 2017 Phys. Rev. B 95 054428

    [12]

    Hellman F, Hoffmann A, Tserkovnyak Y, Beach G S D, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Drr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimmel A V, Koopmans B, Krivorotov I N, May S J, Petford-Long A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiaville A, Zink B L 2017 Rev. Mod. Phys. 89 025006

    [13]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [14]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [15]

    Moriya T 1960 Phys. Rev. 120 91

    [16]

    Shu L, Chen Y G, Chen H 2002 Acta Phys. Sin. 51 902 (in Chinese) [殳蕾,陈宇光,陈鸿 2002 51 902]

    [17]

    Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267 (in Chinese) [蔡卓,陆文彬,刘拥军 2008 57 7267]

    [18]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) [张丽英,周斌 2011 60 120301]

    [19]

    Luo Y M, Zhou C, Won C, Wu Y Z 2014 AIP Adv. 4 047136

    [20]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [21]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [22]

    Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Nano Lett. 12 1673

    [23]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411

    [24]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [25]

    Xie K X, Sang H 2014 J. Appl. Phys. 116 223901

    [26]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Pear J E 2015 Science 349 283

    [27]

    Luchaire C M, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotech. 11 444

    [28]

    Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D D S, Locatelli A, Menteș T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussign Y, Stashkevich A, Chrif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotech. 11 449

    [29]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [30]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [31]

    Yang H X, Chen G, Cotta A A C, Alpha T, Diaye N, Nikolaev S A, Soares E A, Macedo W A A, Schmid A K, Fert A, Chshiev M 2017 ArXiv 1704 09023

    [32]

    Sanvito S, Hill N A 2001 Phys. Rev. Lett. 87 267202

    [33]

    Fan S W, Yao K L, Liu Z L 2009 Appl. Phys. Lett. 94 152506

    [34]

    Saito H, Zayets V, Yamagata S, Ando K 2003 Phys. Rev. Lett. 90 207202

    [35]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Yang H X, Boulle O, Cros V, Fert A, Chshiev M 2016 ArXiv 1603 01847

    [38]

    Zhu Y, Ma C L, Shi D N, Zhang K C 2014 Phys. Lett. A 378 2234

    [39]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [40]

    Pan Y, Zhu Y, Shi D N, Wei X Y, Ma C L, Zhang K C 2015 J. Alloys Compd. 644 341

    [41]

    Marsman M, Hafner J 2002 Phys. Rev. B 66 224409

    [42]

    Hobbs D, Kresse G, Hafner J 2000 Phys. Rev. B 62 11556

    [43]

    Mryasov O N, Lichtenstein A I, Sandratskii L M, Gubanov V A 1991 J. Phys. Condens. Matter 3 8565

    [44]

    Knpfle K, Sandratskii L M, Kbler J 2000 Phys. Rev. B 62 5564

    [45]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nat. Mater. 12 611

    [46]

    Zhang X, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795

    [47]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [48]

    Dup B, Hoffmann M, Paillard C, Heinze S 2014 Nat. Commun. 5 4030

    [49]

    Hu X X, Zhao J, Gao W 2017 Chin.Phys. B 26 079101

    [50]

    Shang J X, Liu K, Wang F H 2017 Acta Phy. Sin. 66 216801

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 朱凯, 黄灿, 曹邦杰, 潘燕飞, 樊济宇, 马春兰, 朱岩. 单层1T-CoI2中Kitaev作用的第一性原理研究.  , 2023, 72(24): 247101. doi: 10.7498/aps.72.20230909
    [3] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带.  , 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [4] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究.  , 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [5] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究.  , 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [6] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用.  , 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [7] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选.  , 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [8] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究.  , 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [9] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究.  , 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [10] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇. 铁磁/非磁金属异质结中的拓扑霍尔效应.  , 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [11] 张蕾. 斯格明子相关的螺旋磁有序体系的临界行为.  , 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [12] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储.  , 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [13] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究.  , 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [14] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展.  , 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [15] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展.  , 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [16] 杨阳, 王安民, 曹连振, 赵加强, 逯怀新. 与XY双自旋链耦合的双量子比特系统的关联性与相干性.  , 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [17] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动.  , 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [18] 黄灿, 李小影, 朱岩, 潘燕飞, 樊济宇, 施大宁, 马春兰. 第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用.  , 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [19] 曹宁通, 张雷, 吕路, 谢海鹏, 黄寒, 牛冬梅, 高永立. 酞菁铜与MoS2(0001)范德瓦耳斯异质结研究.  , 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [20] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究.  , 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
计量
  • 文章访问数:  6907
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-20
  • 修回日期:  2018-04-21
  • 刊出日期:  2018-07-05

/

返回文章
返回
Baidu
map